We derive expressions for the generating function of the equilibrium queue length probability distribution in a single server queue with general service times and independent Poisson arrival streams of both ordinary, positive customers and negative customers which eliminate a positive customer if present. For the case of first come first served queueing discipline for the positive customers, we compare the killing strategies in which either the last customer in the queue or the one in service is removed by a negative customer. We then consider preemptive-restart with resampling last come first served queueing discipline for the positive customers, combined with the elimination of the customer in service by a negative customer—the case of elimination of the last customer yields an analysis similar to first come first served discipline for positive customers. The results show different generating functions in contrast to the case where service times are exponentially distributed. This is also reflected in the stability conditions. Incidently, this leads to a full study of the preemptive-restart with resampling last come first served case without negative customers. Finally, approaches to solving the Fredholm integral equation of the first kind which arises, for instance, in the first case are considered as well as an alternative iterative solution method.
We derive expressions for the generating function of the equilibrium queue length probability distribution in a single server queue with general service times and independent Poisson arrival streams of both ordinary, positive customers and negative customers which eliminate a positive customer if present. For the case of first come first served queueing discipline for the positive customers, we compare the killing strategies in which either the last customer in the queue or the one in service is removed by a negative customer. We then consider preemptive-restart with resampling last come first served queueing discipline for the positive customers, combined with the elimination of the customer in service by a negative customer—the case of elimination of the last customer yields an analysis similar to first come first served discipline for positive customers. The results show different generating functions in contrast to the case where service times are exponentially distributed. This is also reflected in the stability conditions. Incidently, this leads to a full study of the preemptive-restart with resampling last come first served case without negative customers. Finally, approaches to solving the Fredholm integral equation of the first kind which arises, for instance, in the first case are considered as well as an alternative iterative solution method.
We derive expressions for the Laplace transform of the sojourn time density in a single-server queue with exponential service times and independent Poisson arrival streams of both ordinary, positive customers and negative customers which eliminate a positive customer if present. We compare first-come first-served and last-come first-served queueing disciplines for the positive customers, combined with elimination of the last customer in the queue or the customer in service by a negative customer. We also derive the corresponding result for processor-sharing discipline with random elimination. The results show differences not only in the Laplace transforms but also in the means of the distributions, in contrast to the case where there are no negative customers. The various combinations of queueing discipline and elimination strategy are ranked with respect to these mean values.
We derive expressions for the Laplace transform of the sojourn time density in a single-server queue with exponential service times and independent Poisson arrival streams of both ordinary, positive customers and negative customers which eliminate a positive customer if present. We compare first-come first-served and last-come first-served queueing disciplines for the positive customers, combined with elimination of the last customer in the queue or the customer in service by a negative customer. We also derive the corresponding result for processor-sharing discipline with random elimination. The results show differences not only in the Laplace transforms but also in the means of the distributions, in contrast to the case where there are no negative customers. The various combinations of queueing discipline and elimination strategy are ranked with respect to these mean values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.