Our group has recently demonstrated (Gesta, S., Simon, M., Rey, A., Sibrac, D., Girard, A., Lafontan, M., Valet, P., and Saulnier-Blache, J. S. (2002) J. Lipid Res. 43, 904 -910) the presence, in adipocyte conditioned-medium, of a soluble lysophospholipase D-activity (LPLDact) involved in synthesis of the bioactive phospholipid lysophosphatidic acid (LPA). In the present report, LPLDact was purified from 3T3F442A adipocyte-conditioned medium and identified as the type II ecto-nucleotide pyrophosphatase phosphodiesterase, autotaxin (ATX). A unique ATX cDNA was cloned from 3T3F442A adipocytes, and its recombinant expression in COS-7 cells led to extracellular release of LPLDact. ATX mRNA expression was highly up-regulated during adipocyte differentiation of 3T3F442A-preadipocytes. This up-regulation was paralleled by the ability of newly differentiated adipocytes to release LPLDact and LPA. Differentiation-dependent up-regulation of ATX expression was also observed in a primary culture of mouse preadipocytes. Treatment of 3T3F442A-preadipocytes with concentrated conditioned medium from ATX-expressing COS-7 cells led to an increase in cell number as compared with concentrated conditioned medium from ATX non-expressing COS-7 cells. The specific effect of ATX on preadipocyte proliferation was completely suppressed by co-treatment with a LPA-hydrolyzing phospholipase, phospholipase B. Finally, ATX expression was found in mature adipocytes isolated from mouse adipose tissue and was substantially increased in genetically obesediabetic db/db mice when compared with their lean siblings. In conclusion, the present work shows that ATX is responsible for the LPLDact released by adipocytes and exerts a paracrine control on preadipocyte growth via an LPA-dependent mechanism. Up-regulations of ATX expression with adipocyte differentiation and genetic obesity suggest a possible involvement of this released protein in the development of adipose tissue and obesity-associated pathologies.Because of its ability to store extra energy as triacylglycerol (lipogenesis) and to release fatty acids and glycerol (lipolysis), adipose tissue plays a crucial role in energy balance. In obesity, excessive accumulation of triacylglycerol in adipocytes (hypertrophy) results from an alteration in the balance between lipogenic and/or lipolytic activities of the adipocytes.It is now recognized that, beside their involvement in lipid homeostasis, adipocytes also produce and secrete numerous factors. Among them are endocrine peptides (leptin, adiponectin, angiotensinogen, etc.) which may play an important role in the development of morbid complications of obesity such as cardiovascular diseases, hypertension, diabetes, and cancer. Other adipocyte-secreted factors (tumor necrosis factor, fatty acids, eicosanoids, lysophosphatidic acid, etc.) are produced locally and may influence adipose tissue development and/or metabolism by exerting autocrine/paracrine effects on the different cells composing adipose tissue (adipocytes, preadipocytes, and endothelial...
Recently, we showed that during the acute phase of immune-mediated thrombotic thrombocytopenic purpura (iTTP), ADAMTS13 circulates in an open conformation. Although the cause of this conformational change in acute iTTP remains elusive, ADAMTS13 is mainly closed in iTTP patients (i) in remission with an ADAMTS13 activity >50% and undetectable anti-ADAMTS13 autoantibodies, and (ii) after rituximab treatment, suggesting a role for anti-ADAMTS13 autoantibodies. Therefore, IgGs from 18 acute iTTP patients were purified and added to closed ADAMTS13 in healthy donor plasma. This resulted in open ADAMTS13 in 14/18 (78%) samples, proving that indeed anti-ADAMTS13 autoantibodies can induce an open ADAMTS13 conformation. To further elucidate the conformation of ADAMTS13 in iTTP patients, we studied a novel iTTP patient cohort (n=197) that also included plasma samples of iTTP patients in remission where ADAMTS13 activity was <50%. The open ADAMTS13 conformation was not only found during acute iTTP but also in patients in remission with an ADAMTS13 activity <50% and in half of the patients with an ADAMTS13 activity >50%, although free anti-ADAMTS13 autoantibodies were not always detected. Thus open ADAMTS13 is not only a hallmark of acute iTTP, but also a novel biomarker to detect subclinical iTTP in patients in remission. Finally, a long term follow-up study in one iTTP patient showed that the open conformation precedes a severe drop in ADAMTS13 activity. In conclusion, we have shown that anti-ADAMTS13 autoantibodies from iTTP patients induce an open ADAMTS13 conformation. Most importantly, an open ADAMTS13 conformation is a biomarker for subclinical iTTP and could become an important tool in TTP management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.