A commonly observed preferential association was quantified between mature native mesquite (Prosopis articulata) trees and the seedlings of six cactus species (Pachycereus pringlei, Opuntia cholla, Lophocereus schottii, Machaerocereus gummosus, Lemaireocereus thurberi, Mammilaria sp.) in a previously-disturbed area of the Sonoran Desert of Baja California, Mexico. We hypothesized that, in addition to more favorable edaphic factors, the inoculum potential of beneficial vesicular-arbuscular mycorrhizal (VAM) fungi was higher, and therefore, more favorable for cactus seedling establishment under the mesquite tree canopy (UC) compared to adjacent barren areas (BAs) away from the trees. In the greenhouse inoculum potential assays, VAM fungi were detected in onion (Allium cepa) trap plants from all soil samples regardless of collection site, but cardon cactus (P. pringlei) trap seedlings formed no VAM even after 6.5 months. Test soils were further used to preinoculate new onion seedlings transplanted into pots, to serve as nurse plants to inoculate adjacent cardon seedlings by vegetative transfer. After 15 months, cardon seedlings did develop slight VAM colonization, confined exclusively to the outermost cortical layers. Examination of test soils for spores or root fragments revealed very few to none, and spore production on onion trap plant roots was also sparse even though colonization was high. Analysis of UC and BA soils revealed that the water holding capacity, nutrient content, cation exchange capacity, total carbon, and total nitrogen contents of the UC soils were all higher than those of the BA soils. Since the VAM inoculum density in this study was not different between sites under and away from the mesquite tree canopy, we concluded that VAM inoculum density is not the primary factor for the establishment of cactus seedlings and that edaphic factors probably play a more important role. Our results suggest, however, that VAM inoculum potential in these hot desert soils, although relatively low, is probably maintained in the upper layers by means of hyphal fragments rather than spores.
Rhododendrons are an important crop in the ornamental nursery industry, but are prone to Phytophthora root rot. Phytophthora root rot is a continuing issue on rhododendrons despite decades of research. Several Phytophthora species are known to cause root rot, but most research has focused on P. cinnamomi, and comparative information on pathogenicity is limited for other commonly encountered oomycetes, including Phytophthora plurivora and Pythium cryptoirregulare. In this study, three isolates each of P. cinnamomi, P. plurivora, and Py. cryptoirregulare were used to inoculate rhododendron cultivars Cunningham’s White and Yaku Princess at two different inoculum levels. All three species caused disease, especially at the higher inoculum level. P. cinnamomi and P. plurivora were the most aggressive pathogens, causing severe root rot, whereas Py. cryptoirregulare was a weak pathogen that only caused mild disease. Within each pathogen species, isolate had no influence on disease. Both P. cinnamomi and P. plurivora caused more severe disease on Cunningham’s White than on Yaku Princess, suggesting that the relative resistance and susceptibility among rhododendron cultivars might be similar for both pathogens. Reisolation of P. cinnamomi and P. plurivora was also greater from plants exhibiting aboveground symptoms of wilting and plant death and belowground symptoms of root rot than from those without symptoms. Results show that both P. cinnamomi and P. plurivora, but not Py. cryptoirregulare, are important pathogens causing severe root rot in rhododendron. This study establishes the risks for disease resulting from low and high levels of inoculum for each pathogen. Further research is needed to evaluate longer term risks associated with low inoculum levels on rhododendron health and to explore whether differences among pathogen species affect disease control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.