Dipeptidyl peptidase IV (DPP-IV) inhibition has the potential to become a valuable therapy for type 2 diabetes. The synthesis and structure-activity relationship of a new DPP-IV inhibitor class, N-substituted-glycyl-2-cyanopyrrolidines, are described as well as the path that led from clinical development compound 1-[2-[5-cyanopyridin-2-yl)amino]ethylamino]acetyl-2-cyano-(S)-pyrrolidine (NVP-DPP728, 8c) to its follow-up, 1-[[(3-hydroxy-1-adamantyl) amino]acetyl]-2-cyano-(S)-pyrrolidine (NVP-LAF237, 12j). The pharmacological profile of 12j in obese Zucker fa/fa rats along with pharmacokinetic profile comparison of 8c and 12j in normal cynomolgus monkeys is discussed. The results suggest that 12j is a potent, stable, selective DPP-IV inhibitor possessing excellent oral bioavailability and potent antihyperglycemic activity with potential for once-a-day administration.
Inhibition of dipeptidyl peptidase-4 (DPP-4) by vildagliptin prevents degradation of glucagon-like peptide-1 (GLP-1) and reduces glycaemia in patients with type 2 diabetes mellitus, with low risk for hypoglycaemia and no weight gain. Vildagliptin binds covalently to the catalytic site of DPP-4, eliciting prolonged enzyme inhibition. This raises intact GLP-1 levels, both after meal ingestion and in the fasting state. Vildagliptin has been shown to stimulate insulin secretion and inhibit glucagon secretion in a glucose-dependent manner. At hypoglycaemic levels, the counterregulatory glucagon response is enhanced relative to baseline by vildagliptin. Vildagliptin also inhibits hepatic glucose production, mainly through changes in islet hormone secretion, and improves insulin sensitivity, as determined with a variety of methods. These effects underlie the improved glycaemia with low risk for hypoglycaemia. Vildagliptin also suppresses postprandial triglyceride (TG)-rich lipoprotein levels after ingestion of a fat-rich meal and reduces fasting lipolysis, suggesting inhibition of fat absorption and reduced TG stores in non-fat tissues. The large body of knowledge on vildagliptin regarding enzyme binding, incretin and islet hormone secretion and glucose and lipid metabolism is summarized, with discussion of the integrated mechanisms and comparison with other DPP-4 inhibitors and GLP-1 receptor activators, where appropriate.
The conformation of [l-13C,15N]acetyl-L-camitine is studied by rotational-echo, double-resonance (REDOR) NMR experiments. The REDOR results show that acetyl-L-camitine adopts an extended molecular conformation in the solid state for both crystalline and lyophilized samples. These findings are in contrast to various X-ray-determined structures of racemic acetylcamitine showing folded conformations.
Dipeptidyl peptidase IV (DPP-IV) inhibition has the potential to become a valuable therapy for type 2 diabetes. We report the first use of solid-phase synthesis in the discovery of a new DPP-IV inhibitor class and a solution-phase synthesis that is practical up to the multikilogram scale. One compound, NVP-DPP728 (2), is profiled as a potent, selective, and short-acting DPP-IV inhibitor that has excellent oral bioavailability and potent antihyperglycemic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.