We have examined the distribution of ryanodine receptors, L-type Ca(2+) channels, calsequestrin, Na(+)/Ca(2+) exchangers, and voltage-gated Na(+) channels in adult rat ventricular myocytes. Enzymatically dissociated cells were fixed and dual-labeled with specific antibodies using standard immunocytochemistry protocols. Images were deconvolved to reverse the optical distortion produced by wide-field microscopes equipped with high numerical aperture objectives. Every image showed a well-ordered array of fluorescent spots, indicating that all of the proteins examined were distributed in discrete clusters throughout the cell. Mathematical analysis of the images revealed that dyads contained only ryanodine receptors, L-type Ca(2+) channels, and calsequestrin, and excluded Na(+)/Ca(2+) exchangers and voltage-gated Na(+) channels. The Na(+)/Ca(2+) exchanger and voltage-gated Na(+) channels were distributed largely within the t-tubules, on both transverse and axial elements, but were not co-localized. The t-tubule can therefore be subdivided into at least three structural domains; one of coupling (dyads), one containing the Na(+)/Ca(2+) exchanger, and one containing voltage-gated Na(+) channels. We conclude that if either the slip mode conductance of the Na(+) channel or the reverse mode of the Na(+)/Ca(2+) exchanger are to contribute to the contractile force, the fuzzy space must extend outside of the dyad.
Fluorescent probes offer insight into the highly localized and rapid molecular events that underlie cell function. However, methods are required that can efficiently transform the limited signals from such probes into high-resolution images. An algorithm has now been developed that produces highly accurate images of fluorescent probe distribution inside cells with minimal light exposure and a conventional light microscope. This method provides resolution nearly four times greater than that currently available from any fluorescence microscope and was used to study several biological problems.
Heart muscle excitation-contraction (E-C) coupling is governed by Ca 2؉ release units (CRUs) whereby Ca 2؉ influx via L-type Ca 2؉ channels (Cav1.2) triggers Ca 2؉ release from juxtaposed Ca 2؉ release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (Trdn ؊/؊ ). The structure and protein composition of the cardiac CRU is significantly altered in Trdn ؊/؊ hearts. jSR proteins (RyR2, Casq2, junctin, and junctophilin 1 and 2) are significantly reduced in Trdn ؊/؊ hearts, whereas Cav1.2 and SERCA2a remain unchanged. Electron microscopy shows fragmentation and an overall 50% reduction in the contacts between jSR and T-tubules. Immunolabeling experiments show reduced colocalization of Cav1.2 with RyR2 and substantial Casq2 labeling outside of the jSR in Trdn ؊/؊ myocytes. CRU function is impaired in Trdn ؊/؊ myocytes, with reduced SR Ca 2؉ release and impaired negative feedback of SR Ca 2؉ release on Cav1.2 Ca 2؉ currents (ICa). Uninhibited Ca 2؉ influx via ICa likely contributes to Ca 2؉ overload and results in spontaneous SR Ca 2؉ releases upon -adrenergic receptor stimulation with isoproterenol in Trdn ؊/؊ myocytes, and ventricular arrhythmias in Trdn ؊/؊ mice. We conclude that triadin is critically important for maintaining the structural and functional integrity of the cardiac CRU; triadin loss and the resulting alterations in CRU structure and protein composition impairs E-C coupling and renders hearts susceptible to ventricular arrhythmias.cardiac muscle ͉ sarcoplasmic reticulum ͉ calsequestrin ͉ Cav1.2 ͉ RyR2
The Na+/Ca2+ exchanger, driven by a transmembrane Na+ gradient, plays a key role in regulating Ca2+ concentration in many cells. Although the exchanger influences Ca2+ concentration, its activity in smooth muscle appears to be closely coupled to Ca2+ availability from intracellular stores. This linkage might result if the exchanger were positioned close to Ca2+ storage sites within the sarcoplasmic reticulum. To test this hypothesis we have developed methods to assess the relative three-dimensional distribution of proteins involved in Na+/K+ pumping, Na+/Ca2+ exchange, Ca2+ storage within the sarcoplasmic reticulum, and attachment of contractile filaments to the membrane in smooth muscle. Here we report that the Na+/Ca2+ exchanger is largely co-distributed with the Na+/K+ pump on unique regions of the plasma membrane in register with, and close to, calsequestrin-containing regions of the sarcoplasmic reticulum in sites distinct from the sites where contractile filaments attach to the membrane. This molecular organization suggests that the plasma membrane is divided into at least two functional domains, and appear to provide a mechanism for the strong linkage seen in smooth muscle between Na+/K+ pumping and Na+/Ca2+ exchange, and between Na+/Ca2+ exchange and Ca2+ release from the sarcoplasmic reticulum.
Voltage-gated K + (Kv) channels are particularly important in the physiology of excitable cells in the heart and the brain. PSD-95 is known to cluster Shaker channels and NMDA receptors and the latter is known to couple through K Kactinin-2 to the post-synaptic cytoskeleton [Wyszynski et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.