Ibrutinib, a first generation Btk inhibitor, is approved for the treatment of CLL and mantle cell lymphoma; known toxicities include atrial fibrillation, diarrhea, rash, arthralgia and bleeding events (1). Recent reports show ibrutinib's off target effects may negatively impact its potential for combined therapy with anti-CD20 antibodies (2,3). Here we describe the pharmacologic characterization of ACP-196 a potent, novel second generation Btk inhibitor, which binds covalently to Cys481 with improved selectivity and in vivo target coverage.
Compared to ibrutinib and CC-292, ACP-196 demonstrated higher selectivity for Btk when profiled against a panel of 395 non-mutant kinases (1 μM) in a competitive binding assay. IC50 determinations on 9 kinases with a Cys in the same position as Btk showed ACP-196 to be the most selective. The improved selectivity is related to the reduced intrinsic reactivity of ACP-196's electrophile. Importantly, unlike ibrutinib, ACP-196 did not inhibit EGFR, Itk or Txk. Phosphoflow assays on EGFR expressing cell lines confirmed ibrutinib's EGFR inhibition (EC50: 47-66 nM) with no inhibition observed for ACP-196 at 10 μM. These data may explain the ibrutinib-related incidence of diarrhea and rash. Ibrutinib's potency on Itk and Txk may explain why it interferes with cell-mediated anti-tumor activities of therapeutic CD20 antibodies and immune-mediated killing in the tumor microenvironment (2,3).
In human whole blood, ACP-196 and ibrutinib showed robust and equipotent inhibitory activity on B-cell receptor induced responses in the low nM range, whereas CC-292 was 10-20 fold less potent. In vivo, oral administration of ACP-196 in mice resulted in dose-dependent inhibition of anti-IgM-induced CD86 expression in CD19+ splenocytes with an ED50 of 0.34 mg/kg compared to 0.91 mg/kg for ibrutinib. A similar model was used to compare the duration of Btk inhibition after a single oral dose of 25 mg/kg. ACP-196 and ibrutinib inhibited CD86 expression >90% at 3h and ∼50% at 24h postdose. In contrast, CC-292 inhibited ∼50% at 3h and ∼20% at 24h postdose.
An ELISA based Btk target occupancy assay was developed to measure target coverage in preclinical and clinical studies. In healthy volunteers, ACP-196 at an oral dose of 100 mg QD showed >90% target coverage over a 24h period. Btk occupancy and regulation of the PD markers (CD69 and CD86) correlated with PK parameters for exposure. In CLL patients, after 7 days of dosing with ACP-196 at 200 mg QD, 94% Btk target occupancy was observed compared with ∼80% reported for ibrutinib at 420 mg QD (4).
In conclusion, ACP-196 is a novel Btk inhibitor with key pharmacologic differentiators versus ibrutinib and CC-292. ACP-196 is currently being evaluated in clinical trials.
1. IMBRUVICA package insert 2014
2. Rajasekaran Blood 2014 Abstr # 3118
3. Da Roit Haematologica 2014
4. Byrd NEJM 2013
Citation Format: Todd Covey, Tjeerd Barf, Michael Gulrajani, Fanny Krantz, Bart van Lith, Elena Bibikova, Bas van de Kar, Edwin de Zwart, Ahmed Hamdy, Raquel Izumi, Allard Kaptein. ACP-196: a novel covalent Bruton's tyrosine kinase (Btk) inhibitor with improved selectivity and in vivo target coverage in chronic lymphocytic leukemia (CLL) patients. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2596. doi:10.1158/1538-7445.AM2015-2596