Most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sedimenttransport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5-1.0 m on a 1-2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave-and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5-1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.
The availability of nearly 100 years of bathymetric measurements allows the analysis of the morphodynamic evolution of the Dutch Wadden Sea under rising sea level and increasing human constraint. The historically observed roll-over mechanisms of landward barrier and coastline retreat cannot be sustained naturally due to numerous erosion control measures that have fixed the tidal basin and barrier dimensions. Nevertheless, the large continuous sedimentation in the tidal basins (nearly 600 million m 3 ), the retained inlets and the similar channel-shoal characteristics of the basins during the observation period indicate that the Wadden Sea is resilient to anthropogenic influence, and can import sediment volumes even larger than those needed to compensate the present rate of sea-level rise. The largest sedimentation occurs in the Western Wadden Sea, where the influence of human intervention is dominant. The large infilling rates in closed-off channels, and along the basin shoreline, rather than a gradual increase in channel flat heights, render it likely that this sedimentation is primarily a response to the closure of the Zuiderzee and not an adaptation to sea-level rise. Most of the sediments were supplied by the ebb-tidal deltas. It is, however, unlikely that the sediment volume needed to reach a new equilibrium morphology in the Western Wadden Sea can be delivered by the remaining ebb-tidal deltas alone.
Observations show global sea level is rising due to climate change, with the highest rates in the tropical Pacific Ocean where many of the world’s low-lying atolls are located. Sea-level rise is particularly critical for low-lying carbonate reef-lined atoll islands; these islands have limited land and water available for human habitation, water and food sources, and ecosystems that are vulnerable to inundation from sea-level rise. Here we demonstrate that sea-level rise will result in larger waves and higher wave-driven water levels along atoll islands’ shorelines than at present. Numerical model results reveal waves will synergistically interact with sea-level rise, causing twice as much land forecast to be flooded for a given value of sea-level rise than currently predicted by current models that do not take wave-driven water levels into account. Atolls with islands close to the shallow reef crest are more likely to be subjected to greater wave-induced run-up and flooding due to sea-level rise than those with deeper reef crests farther from the islands’ shorelines. It appears that many atoll islands will be flooded annually, salinizing the limited freshwater resources and thus likely forcing inhabitants to abandon their islands in decades, not centuries, as previously thought.
The Wadden Sea is a unique coastal wetland containing an uninterrupted stretch of tidal flats that span a distance of nearly 500km along the North Sea coast from the Netherlands to Denmark. The development of this system is under pressure of climate change and especially the associated acceleration in sea-level rise (SLR). Sustainable management of the system to ensure safety against flooding of the hinterland, to protect the environmental value and to optimise the economic activities in the area requires predictions of the future morphological development.The Dutch Wadden Sea has been accreting by importing sediment from the ebb-tidal deltas and the North Sea coasts of the barrier islands. The average accretion rate since 1926 has been higher than that of the local relative SLR. The large sediment imports are predominantly caused by the damming of the Zuiderzee and Lauwerszee rather than due to response to this rise in sea level. The intertidal flats in all tidal basins increased in height to compensate for SLR.The barrier islands, the ebb-tidal deltas and the tidal basins that comprise tidal channels and flats together form a sediment-sharing system. The residual sediment transport between a tidal basin and its ebb-tidal delta through the tidal inlet is influenced by different processes and mechanisms. In the Dutch Wadden Sea, residual flow, tidal asymmetry and dispersion are dominant. The interaction between tidal channels and tidal flats is governed by both tides and waves. The height of the tidal flats is the result of the balance between sand supply by the tide and resuspension by waves.At present, long-term modelling for evaluating the effects of accelerated SLR mainly relies on aggregated models. These models are used to evaluate the maximum rates of sediment import into the tidal basins in the Dutch Wadden Sea. These maximum rates are compared to the combined scenarios of SLR and extraction-induced subsidence, in order to explore the future state of the Dutch Wadden Sea.For the near future, up to 2030, the effect of accelerated SLR will be limited and hardly noticeable. Over the long term, by the year 2100, the effect depends on the SLR scenarios. According to the low-end scenario, there will be hardly any effect due to SLR until 2100, whereas according to the high-end scenario the effect will be noticeable already in 2050.
[1] A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.Citation: Elias, E. P. L., G. Gelfenbaum, and A. J. Van der Westhuysen (2012), Validation of a coupled wave-flow model in a high-energy setting: The mouth of the Columbia River,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.