Summary In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of the data under the prior. In contrast, non-Bayesian models are typically compared using cross-validation on held-out data, either through $k$-fold partitioning or leave-$p$-out subsampling. We show that the marginal likelihood is formally equivalent to exhaustive leave-$p$-out crossvalidation averaged over all values of $p$ and all held-out test sets when using the log posterior predictive probability as the scoring rule. Moreover, the log posterior predictive score is the only coherent scoring rule under data exchangeability. This offers new insight into the marginal likelihood and cross-validation, and highlights the potential sensitivity of the marginal likelihood to the choice of the prior. We suggest an alternative approach using cumulative cross-validation following a preparatory training phase. Our work has connections to prequential analysis and intrinsic Bayes factors, but is motivated in a different way.
The prior distribution on parameters of a likelihood is the usual starting point for Bayesian uncertainty quantification. In this paper, we present a different perspective. Given a finite data sample Y 1:n of size n from an infinite population, we focus on the missing Y n+1:∞ as the source of statistical uncertainty, with the parameter of interest being known precisely given Y 1:∞ . We argue that the foundation of Bayesian inference is to assign a predictive distribution on Y n+1:∞ conditional on Y 1:n , which then induces a distribution on the parameter of interest. Demonstrating an application of martingales, Doob shows that choosing the Bayesian predictive distribution returns the conventional posterior as the distribution of the parameter. Taking this as our cue, we relax the predictive machine, avoiding the need for the predictive to be derived solely from the usual prior to posterior to predictive density formula. We introduce the martingale posterior distribution, which returns Bayesian uncertainty directly on any statistic of interest without the need for the likelihood and prior, and this distribution can be sampled through a computational scheme we name predictive resampling. To that end, we introduce new predictive methodologies for multivariate density estimation, regression and classification that build upon recent work on bivariate copulas.
In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of the data under the prior. In contrast, non-Bayesian models are typically compared using cross-validation on held-out data, either through k-fold partitioning or leave-p-out subsampling. We show that the marginal likelihood is formally equivalent to exhaustive leave-p-out cross-validation averaged over all values of p and all held-out test sets when using the log posterior predictive probability as the scoring rule. Moreover, the log posterior predictive is the only coherent scoring rule under data exchangeability. This offers new insight into the marginal likelihood and cross-validation and highlights the potential sensitivity of the marginal likelihood to the choice of the prior. We suggest an alternative approach using cumulative cross-validation following a preparatory training phase. Our work has connections to prequential analysis and intrinsic Bayes factors but is motivated through a different course.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.