Thirty years of research in cognitive psychology and other areas of cognitive science have given us powerful models of the information processing properties of individual human agents. The cognitive science approach provides a very useful frame for thinking about thinking. When this frame is applied to the individual human agent, one asks a set of questions about the mental An initial analysis of speed bugs as cognitive artifacts was completed in November of 1988. Since then, my knowledge of the actual uses of speed bugs and my understanding of their role in cockpit cognition has changed dramatically.
Edwin Hutchins combines his background as an anthropologist and an open ocean racing sailor and navigator in this account of how anthropological methods can be combined with cognitive theory to produce a new reading of cognitive science. His theoretical insights are grounded in an extended analysis of ship navigation—its computational basis, its historical roots, its social organization, and the details of its implementation in actual practice aboard large ships. The result is an unusual interdisciplinary approach to cognition in culturally constituted activities outside the laboratory—"in the wild." Hutchins examines a set of phenomena that have fallen in the cracks between the established disciplines of psychology and anthropology, bringing to light a new set of relationships between culture and cognition. The standard view is that culture affects the cognition of individuals. Hutchins argues instead that cultural activity systems have cognitive properties of their own that are different from the cognitive properties of the individuals who participate in them. Each action for bringing a large naval vessel into port, for example, is informed by culture: the navigation team can be seen as a cognitive and computational system. Introducing Navy life and work on the bridge, Hutchins makes a clear distinction between the cognitive properties of an individual and the cognitive properties of a system. In striking contrast to the usual laboratory tasks of research in cognitive science, he applies the principal metaphor of cognitive science—cognition as computation (adopting David Marr's paradigm)—to the navigation task. After comparing modern Western navigation with the method practiced in Micronesia, Hutchins explores the computational and cognitive properties of systems that are larger than an individual. He then turns to an analysis of learning or change in the organization of cognitive systems at several scales. Hutchins's conclusion illustrates the costs of ignoring the cultural nature of cognition, pointing to the ways in which contemporary cognitive science can be transformed by new meanings and interpretations. Bradford Books imprint
We are quickly passing through the historical moment when people work in front of a single computer, dominated by a small CRT and focused on tasks involving only local information. Networked computers are becoming ubiquitous and are playing increasingly significant roles in our lives and in the basic infrastructures of science, business, and social interaction. For human-computer interaction to advance in the new millennium we need to better understand the emerging dynamic of interaction in which the focus task is no longer confined to the desktop but reaches into a complex networked world of information and computer-mediated interactions. We think the theory of distributed cognition has a special role to play in understanding interactions between people and technologies, for its focus has always been on whole environments: what we really do in them and how we coordinate our activity in them. Distributed cognition provides a radical reorientation of how to think about designing and supporting human-computer interaction. As a theory it is specifically tailored to understanding interactions among people and technologies. In this article we propose distributed cognition as a new foundation for human-computer interaction, sketch an integrated research framework, and use selections from our earlier work to suggest how this framework can provide new opportunities in the design of digital work materials.
Reasoning processes require stable representations of constraints. There are two principal ways to achieve stability in conceptual models. First, the conceptual models that anthropologists call cultural models achieve representational stability via a combination of intrapersonal and interpersonal processes. Second, the association of conceptual structure with material structure can stabilize conceptual representations. This is an old and pervasive cognitive strategy. Conceptual blending theory provides a useful framework for considering the joint contributions and mutual constraints of mental and material structure. Projecting material structure into a blended space can stabilize the conceptual blend. I call an input space from which material structure is projected into a blend a 'material anchor' for the blend. The term material anchor is meant to emphasize the stabilizing role of the material structure. In this article, I will present and discuss a number of examples of materially anchored blends, which depend to different degrees on material structure. Materially anchored blends vary on a number of complexly related dimensions, including the extent to which the blend relies on the presence of material structure in the perceptual field, the complexity of the material structure, and whether the material structure was designed to support the blend or is used opportunistically. #
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.