Physical annealing systems provide heuristic approaches to solving combinatorial optimization problems. Here, we benchmark two types of annealing machines—a quantum annealer built by D-Wave Systems and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillators—on two problem classes, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on cubic graphs. On denser problems, however, we observe an exponential penalty for the quantum annealer [exp(–αDWN2)] relative to CIMs [exp(–αCIMN)] for fixed anneal times, both on the SK model and on 50% edge density MAX-CUT. This leads to a several orders of magnitude time-to-solution difference for instances with over 50 vertices. An optimal–annealing time analysis is also consistent with a substantial projected performance difference. The difference in performance between the sparsely connected D-Wave machine and the fully-connected CIMs provides strong experimental support for efforts to increase the connectivity of quantum annealers.
This study replicated the finding of advantaged Canadian cancer survival in smaller metropolitan areas that had been consistently observed in larger metropolitan areas. Canada's single payer health care system seems to offer similar advantages across a number of diverse urban contexts.
Quantum annealing is a promising approach to heuristically solving difficult combinatorial optimization problems. However, the connectivity limitations in current devices lead to an exponential degradation of performance on general problems. We propose an architecture for a quantum annealer that achieves full connectivity and full programmability while using a number of physical resources only linear in the number of spins. We do so by application of carefully engineered periodic modulations of oscillatorbased qubits, resulting in a Floquet Hamiltonian in which all the interactions are tunable. This flexibility comes at the cost of the coupling strengths between qubits being smaller than they would be compared with direct coupling, which increases the demand on coherence times with increasing problem size. We analyze a specific hardware proposal of our architecture based on Josephson parametric oscillators. Our results show how the minimum-coherence-time requirements imposed by our scheme scale, and we find that the requirements are not prohibitive for fully connected problems with up to at least 1000 spins. Our approach could also have impact beyond quantum annealing, since it readily extends to bosonic quantum simulators, and would allow the study of models with arbitrary connectivity between lattice sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.