Herein, we study the feasibility of using nanocellulose (NC)-based composites with silver and platinum nanoparticles as additive materials to fabricate the support layer of thin film composite (TFC) membranes for water purification applications. In brief, the NC surface was chemically modified and then was decorated with silver and platinum nanoparticles, respectively, by chemical reduction. These metalized nanocellulose composites (MNC) were characterized by several techniques including: FTIR, XPS, TGA, XRD, and XANES to probe their integrity. Thereafter, we fabricated the MNC-TFC membranes and the support layer was modified to improve the membrane properties. The membranes were thoroughly characterized, and the performance was evaluated in forward osmosis (FO) mode with various feed solutions: nanopure water, urea, and wastewater samples. The fabricated membranes exhibited finger-like pore morphologies and varying pore sizes. Interestingly, higher water fluxes and solute rejection was obtained with the MNC-TFC membranes with wastewater samples. The overall approach of this work provides an effort to fabricated membranes with high water flux and enhanced selectivity.
Nanoflowers (NFs) are flowered-shaped particles with overall sizes or features in the nanoscale. Beyond their pleasing aesthetics, NFs have found a number of applications ranging from catalysis, to sensing, to drug delivery. Compared to inorganic based NFs, their organic and hybrid counterparts are relatively underdeveloped mostly because of the lack of a reliable and versatile method for their construction. We report here a method for constructing NFs from a wide variety of biologically relevant molecules (guests), ranging from small molecules, like doxorubicin, to biomacromolecules, like various proteins and plasmid DNA. The method relies on the encapsulation of the guests within a hierarchically structured particle made from supramolecular G-quadruplexes. The size and overall flexibility of the guests dictate the broad morphological features of the resulting NFs, specifically, small and rigid guests favor the formation of NFs with spiky petals, while large and/or flexible guests promote NFs with wide petals. The results from experiments using confocal fluorescence microscopy, and scanning electron microscopy provides the basis for the proposed mechanism for the NF formation.
Many studies have used nanoscale zero valent iron (nZVI) nanoparticles to remove redox-sensitive metals (e.g., As, Cr, U, Se, Ni, Cu) from aqueous systems by absorption or reduction processes. However, very few investigations present a detailed study of the product formed after the remediation process. In order to quantify the efficiency of nZVI particles as a possible cadmium remediation agent, we prepared nZVI by sodium borohydride reduction of an iron complex, FeCl 3 $6H 2 O, at room temperature and ambient pressure. Fe 0 and nanocrystalline structures of iron oxides and oxyhydroxides were obtained with this method. We exposed the nZVI to 6 ppm of Cd 2+ and characterized the products with X-ray diffraction, X-ray absorption and X-ray photoelectron spectroscopy. Inductively coupled plasma analysis showed that the nZVI remediation efficiency of cadmium ions was between 80% and 90% in aqueous media. All of the physical characterization results confirmed the presence of Fe 0 , a-Fe 2 O 3 and FeOOH. High resolution transmission electron microscopy images showed nanofiber formation of a mixture of Fe 0 , oxyhydroxides and oxides iron formed after interacting with cadmium ions, possibly forming CdFe 2 O 4 .These results suggest that the FeOOH shell and other iron oxides in nZVI could enhance Cd 2+ removal.This removal is observed to cause a change of the initial structure of nZVI to nanofibers due to possible formation of CdFe 2 O 4 as a waste product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.