Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.
Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species’ area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.
While studying ecological patterns at large scales, ecologists are often unable to identify all collections, forcing them to either omit these unidentified records entirely, without knowing the effect of this, or pursue very costly and time-consuming efforts for identifying them. These “indets” may be of critical importance, but as yet, their impact on the reliability of ecological analyses is poorly known. We investigated the consequence of omitting the unidentified records and provide an explanation for the results. We used three large-scale independent datasets, (Guyana/ Suriname, French Guiana, Ecuador) each consisting of records having been identified to a valid species name (identified morpho-species – IMS) and a number of unidentified records (unidentified morpho-species – UMS). A subset was created for each dataset containing only the IMS, which was compared with the complete dataset containing all morpho-species (AMS: = IMS + UMS) for the following analyses: species diversity (Fisher's alpha), similarity of species composition, Mantel test and ordination (NMDS). In addition, we also simulated an even larger number of unidentified records for all three datasets and analyzed the agreement between similarities again with these simulated datasets. For all analyses, results were extremely similar when using the complete datasets or the truncated subsets. IMS predicted ≥91% of the variation in AMS in all tests/analyses. Even when simulating a larger fraction of UMS, IMS predicted the results for AMS rather well. Using only IMS also out-performed using higher taxon data (genus-level identification) for similarity analyses. Finding a high congruence for all analyses when using IMS rather than AMS suggests that patterns of similarity and composition are very robust. In other words, having a large number of unidentified species in a dataset may not affect our conclusions as much as is often thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.