A 900-MHz NMR study is reported of peptide sMTM7 that mimics the cytoplasmic proton hemi-channel domain of the seventh transmembrane segment (TM7) from subunit a of H(+)-V-ATPase from Saccharomyces cerevisiae. The peptide encompasses the amino acid residues known to actively participate in proton translocation. In addition, peptide sMTM7 contains the amino acid residues that upon mutation cause V-ATPase to become resistant against the inhibitor bafilomycin. 2D TOCSY and NOESY (1)H-(1)H NMR spectra are obtained of sMTM7 dissolved in d(6)-DMSO and are used to calculate the three-dimensional structure of the peptide. The NMR-based structures and corresponding dynamical features of peptide sMTM7 show that sMTM7 is composed of two alpha-helical regions. These regions are separated by a flexible hinge of two residues. The hinge acts as a ball-and-joint socket and both helical segments move independently with respect to one another. This movement in TM7 is suggested to cause the opening and closing of the cytoplasmic proton hemi-channel and enables proton translocation.
ARTICLE
This journal isTwo different novel families of bifunctional water-soluble dendrimers are synthesized, using the specific functionalization of one function of the cyclotriphosphazene core. Dendrimers are grown from the 5 remaining functions, up to generation 2. Water-solubility is attained in the last step of the synthesis by grafting either ammonium terminal groups or carboxylate terminal groups, on generations 1 and 2 of these bifunctional dendrimers. 12 new compounds are synthesized and fully characterized, in particular by multi-nuclear NMR. The function linked to the core is thioctic acid, suitable for the grafting to gold, thus both types of water-soluble dendrimers can be used to coat gold surfaces. These macromolecular assemblies are characterized by Surface Plasmon Resonance (SPR). In a preliminary attempt, the gold surfaces modified by either positively or negatively charged dendrimers are used for studying their interaction with cells. Exposed to human osteoblast cells (OBC), the influence of the surface coatings on the cell responses is investigated. Polycationic dendrimers provoke cell apoptosis, whereas negatively charged dendrimers support cell adhesion and proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.