In this work we use the geometrical point of view of the Ronchi test and the caustic-touching theorem to describe the structure of the ronchigrams for a parabolical mirror when the point light source is on and off the optical axis and the grating is placed at the caustic associated with the reflected light rays. We find that for a given position of the point light source the structure of the ronchigram is determined by the form of the caustic and the relative position between the grating and the caustic. We remark that the closed loop fringes commonly observed in the ronchigrams appear when the grating and the caustic are tangent to each other. Furthermore, we find that the caustic locally has singularities of the purse or hyperbolic umbilic type, and the ronchigram obtained when the grating is located at certain specific positions at the caustic locally is of the serpentine type. The main motivation of this work is that nowadays a quantitative analysis of the Ronchi test is applied only when the grating is outside the caustic, and we claim that by working at the caustic, the sensitivity of the Ronchi test will be improved. Therefore, a clear understanding of the properties of the ronchigrams when the grating is placed at the caustic will be needed to extend the Ronchi test to that region.
We use geometrical optics and the caustic-touching theorem to study, in an exact way, the change in the topology of the image of an object obtained by reflections on an arbitrary smooth surface. Since the procedure that we use to compute the image is exactly the same as that used to simulate the ideal patterns, referred to as Ronchigrams, in the Ronchi test used to test mirrors, we remark that the closed loop fringes commonly observed in the Ronchigrams when the grating, referred to as a Ronchi ruling, is located at the caustic place are due to a disruption of fringes, or, more correctly, as disruption of shadows corresponding to the ruling bands. To illustrate our results, we assume that the reflecting surface is a spherical mirror and we consider two kinds of objects: circles and line segments.
The aim of the present work is to obtain expressions for both the wavefront train and the caustic associated with the light rays reflected by an arbitrary smooth surface after being emitted by a point light source located at an arbitrary position in free space. To this end, we obtain an expression for the k-function associated with the general integral of Stavroudis to the eikonal equation that describes the evolution of the reflected light rays. The caustic is computed by using the definitions of the critical and caustic sets of the map that describes the evolution of an arbitrary wavefront associated with the general integral. It is shown that the expression for the caustic is the same as that--reported in the literature--obtained by using an exact ray tracing. The general results are applied to a parabolic mirror. For this case, we find that when the point light source is off the optical axis, the caustic locally has singularities of the hyperbolic umbilic type while the reflected wavefront at the caustic region locally has singularities of the cusp ridge and swallowtail types.
The development of an optical contact instrument for measuring the geometric shape of aerodynamic profiles on blades of small power wind turbines is presented. The instrument uses the triangulation principle, where a structured line laser pattern is projected onto the surface of one of the faces of the blade under test, a camera captures the image of the line and is processed to interpret the distorted form of the projected line. A linear sweep of the instrument makes it possible to measure the profile in another section of the blade. Comparison and evaluation results of two symmetric profiles of the NACA 0012 family are presented, one manufactured in a 3D printer and the other one is a metal profile AF104 of a subsonic wind tunnel. Additionally, three sections of a blade with profile FX 63‐137 of a 1.5 kW wind turbine were evaluated. An aerodynamic analysis shows a reduction in the lift coefficient and in the efficiency of the aerodynamic profile, as well as an increase in the drag coefficient. The sensitivity of the instrument is 0.1 mm on the Z‐axis.
The aim of this work is threefold: first we obtain analytical expressions for the wavefront train and the caustic associated with the refraction of a plane wavefront by an axicon lens, second we describe the structure of the ronchigram when the ronchiruling is placed at the flat surface of the axicon and the screen is placed at different relative positions to the caustic region, and third we describe in detail the structure of the null ronchigrating for this system; that is, we obtain the grating such that when it is placed at the flat surface of the axicon its associated pattern, at a given plane perpendicular to the optical axis, is a set of parallel fringes. We find that the caustic has only one branch, which is a segment of a line along the optical axis; the ronchigram exhibits self-intersecting fringes when the screen is placed at the caustic region, and the null ronchigrating exhibits closed loop rulings if we want to obtain its associated pattern at the caustic region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.