SUMMARYSustainable and renewable energy resources, as well as energy storage systems (ESSs), are amongst the current and critical global requirements. A comparative discussion on batteries, fuel cells and electrochemical capacitors (ECs) is presented. The mechanisms involved in various classes of ECs are also elaborated. Additionally, a historical background highlighting some of the major steps associated with EC development over the years is discussed in this review. In particular, carbon nanostructured materials have high potential in the development of ESSs, and hence this review presents an insight on the current ESSs with a strong bias towards these materials as ECs. The current status of carbon nanomaterials, such as carbon nanotubes, nanofibers, nano-onions, nanorods, fullerenes and graphene nanosheets, in ECs is reviewed. The associated effects of nanostructural parameters, such as pore sizes and specific electro-active areas, amongst others, in terms of energy storage capabilities are also discussed. Typical physicochemical characterisation techniques, which enrich understanding of their characteristics, are also reviewed. The discussion views set platforms for a variety of unique carbon nanomaterial designs with high prospective specific capacitance. Key porosity tailoring protocols, such as chemical activation, introduction of heteroatoms in carbon nanostructures and template synthesis methods, are also reviewed. The effects of other device components, such as electrolyte ion size and solvent system, electrode design and use of binders, to the overall capability of EC, are also discussed.
Nanocomposites consisting of multiwalled carbon nanotubes and titania were synthesized by two methods, namely, sol-gel and chemical vapour deposition (CVD) methods. The work takes advantage of the bridging ability of nanotechnology between macromolecules and the solid state process in engineering alternative nanomaterials for various applications including solar cell fabrication. Physical and chemical characterization of the mesoporous nanocomposites from the two synthetic methods were investigated using Raman spectroscopy, thermogravimetric analysis, Fourier transformation infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, surface characterization and X-ray diffraction analysis. Physicochemical properties in the nanocomposites such as thermal stability, pore volume, crystallinity and surface area were observed to be a subject of MWCNT: titania ratios and synthetic methods. From the CVD synthetic method, observed attributes include more uniform and smoother coating; better crystallinity and larger pore width than sol-gel method. On the other hand, nanocomposites from sol-gel synthetic method had larger surface areas, were more defective and less thermally stable than those from CVD. Nanocomposites by the CVD method performed 39.2 % more efficient than those from sol-gel in light-harvesting experiments. The study shows that the nanocomposites synthesized were more effective than titania alone when the cheaper natural dye, Eosin B, was used. This highlights the great potential of typical nanomaterials in improving the performances of titania in DSSCs as well as lowering the cost of the ultimate devices.
Due to the finite nature, health and environmental hazards currently associated with the use of fossil energy resources, there is a global drive to hasten development and deployment of renewable...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.