A modified version of a previously developed mathematical model [Obeyesekere et al., Cell Prolif. (1997)] of the G1-phase of the cell cycle is presented. This model describes the regulation of the G1-phase that includes the interactions of the nuclear proteins, RB, cyclin E, cyclin D, cdk2, cdk4 and E2F. The effects of the growth factors on cyclin D synthesis under saturated or unsaturated growth factor conditions are investigated based on this model. The solutions to this model (a system of nonlinear ordinary differential equations) are discussed with respect to existing experiments. Predictions based on mathematical analysis of this model are presented. In particular, results are presented on the existence of two stable solutions, i.e., bistability within the G1-phase. It is shown that this bistability exists under unsaturated growth factor concentration levels. This phenomenon is very noticeable if the efficiency of the signal transduction, initiated by the growth factors leading to cyclin D synthesis, is low. The biological significance of this result as well as possible experimental designs to test these predictions are presented.
In this work we present a mathematical approach to elucidate possible mechanisms involving mdm2 in the regulation of the cell cycle. It has been experimentally shown that the over-expression of MDM2 leads to uncoupling of DNA synthesis with mitosis resulting in polyploidy cells with multiple copies of their genomes. The function of MDM2 that uncouples the DNA synthesis phase (S) and the Mitosis phase (M) is unclear. To answer this question, we first formulate a mathematical model of the dynamics of the cell cycle regulatory proteins during the DNA synthesis phase and mitosis. This model is then tested for bifurcation that produces period doubling cascades that we relate to the biological event of polyploidy. The model formulation, the underlying biology, and the bifurcation results to delineate the unknown function of MDM2 are presented. Based on reproducing the known experimental result of polyploidy in MDM2 overexpressed cells, we propose several possible functions of mdm2, i.e., possible interactions with the other cell cycle regulating proteins that will result in uncoupling the S and M phases. We conclude that the most likely unknown function of MDM2 leading to the uncoupling of the S and M phases is an obstruction of the activation of Cdc25C by MDM2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.