Distributed and Real-Time Simulation plays a keyrole in the Space domain being exploited for missions and systems analysis and engineering as well as for crew training and operational support. One of the most popular standards is the 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA). HLA supports the implementation of distributed simulations (called Federations) in which a set of simulation entities (called Federates) can interact using a Run-Time Infrastructure (RTI). In a given Federation, a Federate can publish and/or subscribes objects and interactions on the RTI only in accordance with their structures as defined in a FOM (Federation Object Model). Currently, the Space domain is characterized by a set of incompatible FOMs that, although meet the specific needs of different organizations and projects, increases the long-term cost for interoperability. In this context, the availability of a reference FOM for the Space domain will enable the development of interoperable HLA-based simulators for related joint projects and collaborations among worldwide organizations involved in the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA). The paper presents a first set of results achieved by a SISO standardization effort that aims at providing a Space Reference FOM for international collaboration on Space systems simulations.
Volume for crew sleep areas Volume for food prep and meal Volume for privacy Access to/from hatch to support equipment transfer Access to stow suits Volume for umbilical management Volume MAV flight control area Volume for donning/doffing suits Accessibility of translation paths Volume of MAV for contingency ingress/egress Volume of MAV for contingency with incapacitated crew Volume for co-located or related operations Volume to limit cross-contamination Volume for the ability of crewmember to use the WCS during sleeping hours without disrupting others Volume to provide adequate range of motion for a crew of 4 during nominal unsuited operations Volume for a crewmember to exercise Volume of MAV habitat to have one crew exercising while others work Overall volume of MAV habitat for a crew of 4 Accessibility to the seats for a crew of 4 Volume for sample stowage
This paper discuses a generic multibody dynamics formulation and associated computer algorithm that addresses the variety of manipulator simulation requirements for engineering analysis, procedures development, and crew familiarization/training at the NASA Johnson Space Center (JSC). The formulation is based on body to body relationships with no concept of branched tree topologies. This important notion results in a single recursion pass to construct a system level mass matrix as opposed to the traditional inbound/outbound passes required by the other recursive methods. Moreover, the formulation can be augmented to account for closed loop topologies. The base body of the structure can be fixed or free; each subsequent body, if any, is attached to its parent body via any combination of rotational or translational degrees of freedom (DOFs). Furthermore, each body in the multibody system can be defined as rigid or flexible. The algorithm is designed to partition the data variables and associated computations for multi-frequency or multi-process computation. The resulting algorithm requires approximately one third the computations (in terms of additions and multiplications) of techniques previously used at the NASA JSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.