This article reports on the collaboration of six states to study how simulation‐based science assessments can become transformative components of multi‐level, balanced state science assessment systems. The project studied the psychometric quality, feasibility, and utility of simulation‐based science assessments designed to serve formative purposes during a unit and to provide summative evidence of end‐of‐unit proficiencies. The frameworks of evidence‐centered assessment design and model‐based learning shaped the specifications for the assessments. The simulations provided the three most common forms of accommodations in state testing programs: audio recording of text, screen magnification, and support for extended time. The SimScientists program at WestEd developed simulation‐based, curriculum‐embedded, and unit benchmark assessments for two middle school topics, Ecosystems and Force & Motion. These were field‐tested in three states. Data included student characteristics, responses to the assessments, cognitive labs, classroom observations, and teacher surveys and interviews. UCLA CRESST conducted an evaluation of the implementation. Feasibility and utility were examined in classroom observations, teacher surveys and interviews, and by the six‐state Design Panel. Technical quality data included AAAS reviews of the items' alignment with standards and quality of the science, cognitive labs, and assessment data. Student data were analyzed using multidimensional Item Response Theory (IRT) methods. IRT analyses demonstrated the high psychometric quality (reliability and validity) of the assessments and their discrimination between content knowledge and inquiry practices. Students performed better on the interactive, simulation‐based assessments than on the static, conventional items in the posttest. Importantly, gaps between performance of the general population and English language learners and students with disabilities were considerably smaller on the simulation‐based assessments than on the posttests. The Design Panel participated in development of two models for integrating science simulations into a balanced state science assessment system. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 363–393, 2012
This paper considers uses of technology in educational assessment from the perspective of innovation and support for teaching and learning. It examines assessment cases drawn from contexts that include large-scale testing programs as well as classroom-based programs, and attempts that have been made to harness the power of technology to provide rich, authentic tasks that elicit aspects of integrated knowledge, critical thinking, and problem solving. These aspects of cognition are seldom well addressed by traditional testing programs using paper and pencil or computer technologies. The paper also gives consideration to strategies for developing balanced, multilevel assessment systems that involve articulating relationships among curriculum-embedded, benchmark, and summative assessments that operate across classroom, district, state, national, and international levels. It discusses the multiple roles for technology in an assessment-based information system in light of the decision support needed from the multiple actors who operate across levels of the education system. The paper concludes with a consideration of the current state of the field as well as the potential for technology to help launch a new era of integrated, learning-centered assessment systems.
Large-scale testing of educational outcomes benefits already from technological applications that address logistics such as development, administration, and scoring of tests, as well as reporting of results. Innovative applications of technology also provide rich, authentic tasks that challenge the sorts of integrated knowledge, critical thinking, and problem solving seldom well addressed in paper-based tests. Such tasks can be used on both large-scale and classroom-based assessments. Balanced assessment systems can be developed that integrate curriculum-embedded, benchmark, and summative assessments across classroom, district, state, national, and international levels. We discuss here the potential of technology to launch a new era of integrated, learning-centered assessment systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.