Advanced cutaneous T-cell lymphoma (CTCL) is resistant to chemotherapy and presents a major area of medical need. In view of the known role of microRNAs (miRNAs) in the regulation of cellular signalling, we aimed to identify the functionally important miRNA species, which regulate apoptosis in CTCL. Using a recently established model in which apoptosis of CTCL cell lines is induced by Notch-1 inhibition by γ-secretase inhibitors (GSIs), we found that miR-122 was significantly increased in the apoptotic cells. miR-122 up-regulation was not specific for GSI-1 but was also seen during apoptosis induced by chemotherapies including doxorubicin and proteasome blockers (bortezomib, MG132). miR-122 was not expressed in quiescent T-cells, but was detectable in CTCL: in lesional skin in mycosis fungoides and in Sézary cells purified from peripheral blood. In situ hybridization results showed that miR-122 was expressed in the malignant T-cell infiltrate and increased in the advanced stage mycosis fungoides. Surprisingly, miR-122 overexpression decreased the sensitivity to the chemotherapy-induced apoptosis via a signaling circuit involving the activation of Akt and inhibition of p53. We have also shown that induction of miR-122 occurred via p53 and that p53 post-transcriptionally up-regulated miR-122. miR-122 is thus an amplifier of the antiapoptotic Akt/p53 circuit and it is conceivable that a pharmacological intervention in this pathway may provide basis for novel therapies for CTCL.
Deregulation of Notch signaling has been linked to the development of T-cell leukemias and several solid malignancies. Yet, it is unknown whether Notch signaling is involved in the pathogenesis of mycosis fungoides and Sézary syndrome, the most common subtypes of cutaneous T-cell lymphoma. By immunohistochemistry of 40 biopsies taken from skin lesions of mycosis fungoides and Sézary syndrome, we demonstrated prominent expression of Notch1 on tumor cells, especially in the more advanced stages. The γ-secretase inhibitor I blocked Notch signaling and potently induced apoptosis in cell lines derived from mycosis fungoides (MyLa) and Sézary syndrome (SeAx, HuT-78) and in primary leukemic Sézary cells. Specific down-regulation of Notch1 (but not Notch2 and Notch3) by siRNA induced apoptosis in SeAx. The mechanism of apoptosis involved the inhibition of nuclear factor-κB, which is the most important prosurvival pathway in cutaneous T-cell lymphoma. Our data show that Notch is present in cutaneous T-cell lymphoma and that its inhibition may provide a new way to treat cutaneous T-cell lymphoma.
Successful/effective cancer therapy in low grade lymphoma is often hampered by cell resistance to anti-neoplastic agents. The crucial mechanisms responsible for this phenomenon are poorly understood. Overcoming resistance of tumor cells to anticancer agents, such as proteasome inhibitors, could improve their clinical efficacy. Using cutaneous T-cell lymphoma (CTCL) as a model of the chemotherapy-resistant peripheral lymphoid malignancy, we demonstrated that resistance to proteasome inhibition involved a signaling between the oncogene cMyc and miR-125b-5p. Bortezomib repressed cMyc and simultaneously induced miR-125b-5p that exerted a cytoprotective effect through the downmodulation of MAD4. Overexpression of cMyc repressed miR-125b-5p transcription and sensitized lymphoma cells to bortezomib. The central role of miR-125b-5p was further confirmed in a mouse model of T-cell lymphoma, where xenotransplantation of human CTCL cells overexpressing miR-125b-5p resulted in enhanced tumor growth and a shorter median survival. Our findings describe a novel mechanism through which miR-125b-5p not only regulates tumor growth in vivo, but also increases cellular resistance to proteasome inhibitors via modulation of MAD4.
P53 is rarely mutated in cutaneous T-cell lymphoma (CTCL) and is therefore a promising target for innovative therapeutic approaches. Nutlin-3a is an inhibitor of MDM2 (human homolog of murine double minute 2), which disrupts its interaction with p53, leading to the stabilization and activation of p53. To investigate the potential therapeutic use of nutlin-3a in CTCL, we screened CTCL lines Hut-78, SeAx, MyLa2000, Mac1, and Mac2a by measuring p53 levels after nutlin-3a treatment. In MyLa2000, Mac1, and Mac2a, we observed the increase in p53, indicating the fully functional p53. In the remaining cell lines, P53 mutation analysis identified a homozygous nonsense mutation (R196Stop in Hut-78) and a homozygous missense mutation (G245S in SeAx). In MyLa2000, Mac1, and Mac2a carrying wild-type P53, nutlin-3a induced apoptosis and senescence demonstrated by permanent G0/G1 cell-cycle block and expression of the senescence-associated β-galactosidase. This effect was abolished in cells in which p53 was silenced by small interfering RNA. Sézary cells lack functional p53 and were resistant to nutlin-3a. However, nutlin-3a potentiated the efficacy of conventional chemotherapeutics not only in cells with intact p53 but also in Hut-78, SeAx, and Sézary cells. Thus, targeting p53 by nutlin-3a may constitute a therapeutic approach in CTCL because of increased apoptosis and senescence of tumor cells.
BackgroundMicro RNAs (miRs) have emerged as key regulators during oncogenesis. They have been found to regulate cell proliferation, differentiation, and apoptosis. Mir-125b has been identified as an oncomir in various forms of tumours, but we have previously proposed that miR-125b is a suppressor of lymph node metastasis in cutaneous malignant melanoma. Our goal was therefore to further examine this theory.MethodsWe used in-situ-hybridization to visualise miR-125b expression in primary tumours and in lymph node metastasis. Then using a miRVector plasmid containing a miR-125b-1 insert we transfected melanoma cell line Mel-Juso and then investigated the effect of the presence of a stable overexpression of miR-125b on growth by western blotting, flow cytometry and β-galactosidase staining. The tumourogenicity of the transfected cells was tested using a murine model and the tumours were further examined with in-situ-hybridization.ResultsIn primary human tumours and in lymph node metastases increased expression of miR-125b was found in single, large tumour cells with abundant cytoplasm. A stable overexpression of miR-125b in human melanoma cell line Mel-Juso resulted in a G0/G1 cell cycle block and emergence of large cells expressing senescence markers: senescence-associated beta-galactosidase, p21, p27 and p53. Mel-Juso cells overexpressing miR-125b were tumourigenic in mice, but the tumours exhibited higher level of cell senescence and decreased expression of proliferation markers, cyclin D1 and Ki67 than the control tumours.ConclusionsOur results confirm the theory that miR-125b functions as a tumour supressor in cutaneous malignant melanoma by regulating cellular senescence, which is one of the central mechanisms protecting against the development and progression of malignant melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.