The use of the diffusion tensor imaging (DTI) is rapidly growing in the neuroimaging field. Nevertheless, rigorously performed quantitative validation of DTI pathologic metrics remains very limited owing to the difficulty in co-registering quantitative histology findings with magnetic resonance imaging. The aim of this review is to summarize the existing state-of-the-art knowledge with respect to axial (λ║) and radial (λ┴) diffusivity as DTI markers of axonal and myelin damage, respectively. First, we provide technical background for DTI and briefly discuss the specific organization of white matter in bundles of axonal fibers running in parallel; this is the natural target for imaging based on diffusion anisotropy. Second, we discuss the four seminal studies that paved the way for considering axial (λ║) and radial (λ┴) diffusivity as potential in vivo surrogate markers of axonal and myelin damage, respectively. Then, we present difficulties in interpreting axial (λ║) and radial (λ┴) diffusivity in clinical conditions associated with inflammation, edema, and white matter fiber crossing. Finally, future directions are highlighted. In summary, DTI can reveal strategic information with respect to white matter tracts, disconnection mechanisms, and related symptoms. Axial (λ║) and radial (λ┴) diffusivity seem to provide quite consistent information in healthy subjects, and in pathological conditions with limited edema and inflammatory changes. DTI remains one of the most promising non-invasive diagnostic tools in medicine.
In this narrative review, a theoretical framework on the crosstalk between physical exercise and blood-brain barrier (BBB) permeability is presented. We discuss the influence of physical activity on the factors affecting BBB permeability such as systemic inflammation, the brain renin-angiotensin and noradrenergic systems, central autonomic function and the kynurenine pathway. The positive role of exercise in multiple sclerosis and Alzheimer’s disease is described. Finally, the potential role of conditioning as well as the effect of exercise on BBB tight junctions is outlined. There is a body of evidence that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress and has anti-inflammatory effects. It improves endothelial function and might increase the density of brain capillaries. Thus, physical training can be emphasised as a component of prevention programs developed for patients to minimise the risk of the onset of neuroinflammatory diseases as well as an augmentation of existing treatment. Unfortunately, despite a sound theoretical background, it remains unclear as to whether exercise training is effective in modulating BBB permeability in several specific diseases. Further research is needed as the impact of exercise is yet to be fully elucidated.
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, which develops mostly in the setting of chronic liver disease. European Association for the Study of the Liver (EASL) and European Organization for Research and Treatment of Cancer (EORTC) prepared guidelines for screening, follow-up and diagnosis of HCC to facilitate decision making and optimize both diagnostic and therapeutic protocols.The review briefly describes etiology, epidemiology and histopathology of HCC and presents EASL-EORTC guidelines for surveillance and diagnosis of HCC. Target population and screening algorithm is presented in the surveillance section. Ultrasound imaging of HCC and the role of contrast enhanced ultrasound are described as well as the value of laboratory tests in screening. Further, radiological features of HCC in multiphase CT and dynamic contrast enhanced MRI and diagnostic criteria are presented. Additionally, the advantages of advanced techniques in MRI such as diffusion weighed imaging and the use of hepatocyte-specific contrast agents are discussed.Lastly, the EASL-EORTC guidelines are compared with the guidelines of the American Association for the Study of Liver Diseases and the Japan Society of Hepatology. Also LI-RADS and the Barcelona Clinic Liver Cancer classification are mentioned.In the near future, due to the ongoing advances in imaging a revision of the guidelines may be expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.