This study investigated the acute effects of passive whole body vibration (WBV) on executive functions in healthy young adults. Participants (112 females, 21 males; age: 20.5±2.2 years) underwent six passive WBV sessions (frequency 30 Hz, amplitude approximately 0.5 mm) and six non-vibration control sessions of two minutes each while sitting on a chair mounted on a vibrating platform. A passive WBV session was alternated with a control session. Directly after each session, performance on the Stroop Color-Block Test (CBT), Stroop Color-Word Interference Test (CWIT), Stroop Difference Score (SDS) and Digit Span Backward task (DSBT) was measured. In half of the passive WBV and control sessions the test order was CBT-CWIT-DSBT, and DSBT-CBT-CWIT in the other half. Passive WBV improved CWIT (p = 0.009; effect size r = 0.20) and SDS (p = 0.034; r = 0.16) performance, but only when the CBT and CWIT preceded the DSBT. CBT and DSBT performance did not change. This study shows that two minutes passive WBV has positive acute effects on attention and inhibition in young adults, notwithstanding their high cognitive functioning which could have hampered improvement. This finding indicates the potential of passive WBV as a cognition-enhancing therapy worth further evaluation, especially in persons unable to perform active forms of exercise.
Background: Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are well described. However, little is known about the impact of WBV on the brain. Recently, it was shown in humans that WBV improves attention in an acute WBV protocol. Preclinical research is needed to unravel the underlying brain mechanism. As a first step, we examined whether chronic WBV improves attention in mice. Material and Methods: A custom made vibrating platform for mice with low intensity vibrations was used. Male CD1 mice (3 months of age) received five weeks WBV (30 Hz; 1.9 G), five days a week with sessions of five (n=12) or 30 (n=10) minutes. Control mice (pseudo-WBV; n=12 and 10 for the five and 30 minute sessions, respectively) were treated in a similar way, but did not receive the actual vibration. Object recognition tasks were used as an attention test (novel and spatial object recognition -the primary outcome measure). A Balance beam was used for motor performance, serving as a secondary outcome measure. Results: WBV sessions of five (but not WBV sessions of 30 minutes) improved balance beam performance (mice gained 28% in time needed to cross the beam) and novel object recognition (mice paid significantly more attention to the novel object) as compared to pseudo WBV, but no change was found for spatial object performance (mice did not notice the relocation). Although 30 minutes WBV sessions were not beneficial, it did not impair either attention or motor performance. Conclusion: These results show that brief sessions of WBV improve, next to motor performance, attention for object recognition, but not spatial cues of the objects. The selective improvement of attention in mice opens the avenue to unravel the underlying brain mechanisms.
Adult attention deficit hyperactivity disorder (ADHD) is associated with a variety of cognitive impairments, which were shown to affect academic achievement and quality of life. Current treatment strategies, such as stimulant drug treatment, were demonstrated to effectively improve cognitive functions of patients with ADHD. However, most treatment strategies are associated with a number of disadvantages in a considerable proportion of patients, such as unsatisfactory effects, adverse clinical side effects or high financial costs. In order to address limitations of current treatment strategies, whole-body vibration (WBV) might represent a novel approach to treat cognitive dysfunctions of patients with ADHD. WBV refers to the exposure of the whole body of an individual to vibration and was found to affect physiology and cognition. In the present study, WBV was applied on 10 consecutive days to an adult diagnosed with ADHD. Neuropsychological assessments were performed repeatedly at three different times, i.e., the day before the start of the treatment, on the day following completion of treatment and 14 days after the treatment have been completed (follow-up). An improved neuropsychological test performance following WBV treatment points to the high clinical value of WBV in treating patients with neuropsychological impairments such as ADHD.
Whole body vibration has received much attention as an innovative approach to exercise, lead ing to constantly increasing attention fro m the scientific co mmunity. Previous research considering occupational vibration has illustrated the risks associated with high levels of exposure to vibration; however during vibrat ion exercise the exposure duration is much shorter and therefore the potential comp licat ions must be reconsidered. This review brings together research from various aspects of occupational vibrat ion, clin ical research and vib ration exercise to address issues within the context o f health and safety with a part icular focus on neurophysiological and neurovascular responses. The results indicate that peripheral nerve and blood vessels are exposed to risks such as compression, shear stress and altered function as a response to vibration. However, correct planning and implementation of exercise protocols should effectively control these risks. By summarising the areas that have received attention an overview of potential co mplications will be achieved; with an understanding of which factors prevent participation and those that simp ly require an amended approach to vibration exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.