Inhibitors against the p110δ isoform of PI3K have shown remarkable therapeutic efficacy in some human leukaemias1,2. Since p110δ is primarily expressed in leukocytes3, drugs against p110δ have not been considered for the treatment of solid tumours4. We report here that p110δ inactivation in mice protects against a broad range of cancers, including non-haematological solid tumours. We demonstrate that p110δ inactivation in regulatory T cells (Treg) unleashes CD8+ cytotoxic T cells and induces tumour regression. Thus, p110δ inhibitors can break tumour-induced immune tolerance and should be considered for wider use in oncology.
Recent advances in genome-wide association studies (GWAS) have enabled us to identify thousands of genetic variants (GVs) that are associated with human diseases. As next-generation sequencing technologies become less expensive, more GVs will be discovered in the near future. Existing databases, such as NHGRI GWAS Catalog, collect GVs with only genome-wide level significance. However, many true disease susceptibility loci have relatively moderate P values and are not included in these databases. We have developed GWASdb that contains 20 times more data than the GWAS Catalog and includes less significant GVs (P < 1.0 × 10−3) manually curated from the literature. In addition, GWASdb provides comprehensive functional annotations for each GV, including genomic mapping information, regulatory effects (transcription factor binding sites, microRNA target sites and splicing sites), amino acid substitutions, evolution, gene expression and disease associations. Furthermore, GWASdb classifies these GVs according to diseases using Disease-Ontology Lite and Human Phenotype Ontology. It can conduct pathway enrichment and PPI network association analysis for these diseases. GWASdb provides an intuitive, multifunctional database for biologists and clinicians to explore GVs and their functional inferences. It is freely available at http://jjwanglab.org/gwasdb and will be updated frequently.
Anti–CTLA-4 mAb is efficacious in enhancing tumor immunity in humans. CTLA-4 is expressed by conventional T cells upon activation and by naturally occurring FOXP3+CD4+ Treg cells constitutively, raising a question of how anti–CTLA-4 mAb can differentially control these functionally opposing T cell populations in tumor immunity. Here we show that FOXP3high potently suppressive effector Treg cells were abundant in melanoma tissues, expressing CTLA-4 at higher levels than tumor-infiltrating CD8+ T cells. Upon in vitro tumor-antigen stimulation of peripheral blood mononuclear cells from healthy individuals or melanoma patients, Fc-region–modified anti–CTLA-4 mAb with high antibody-dependent cell-mediated cytotoxicity (ADCC) and cellular phagocytosis (ADCP) activity selectively depleted CTLA-4+FOXP3+ Treg cells and consequently expanded tumor-antigen–specific CD8+T cells. Importantly, the expansion occurred only when antigen stimulation was delayed several days from the antibody treatment to spare CTLA-4+ activated effector CD8+T cells from mAb-mediated killing. Similarly, in tumor-bearing mice, high-ADCC/ADCP anti–CTLA-4 mAb treatment with delayed tumor-antigen vaccination significantly prolonged their survival and markedly elevated cytokine production by tumor-infiltrating CD8+ T cells, whereas antibody treatment concurrent with vaccination did not. Anti–CTLA-4 mAb modified to exhibit a lesser or no Fc-binding activity failed to show such timing-dependent in vitro and in vivo immune enhancement. Thus, high ADCC anti–CTLA-4 mAb is able to selectively deplete effector Treg cells and evoke tumor immunity depending on the CTLA-4–expressing status of effector CD8+ T cells. These findings are instrumental in designing cancer immunotherapy with mAbs targeting the molecules commonly expressed by FOXP3+ Treg cells and tumor-reactive effector T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.