Inhibitors against the p110δ isoform of PI3K have shown remarkable therapeutic efficacy in some human leukaemias1,2. Since p110δ is primarily expressed in leukocytes3, drugs against p110δ have not been considered for the treatment of solid tumours4. We report here that p110δ inactivation in mice protects against a broad range of cancers, including non-haematological solid tumours. We demonstrate that p110δ inactivation in regulatory T cells (Treg) unleashes CD8+ cytotoxic T cells and induces tumour regression. Thus, p110δ inhibitors can break tumour-induced immune tolerance and should be considered for wider use in oncology.
Adiponectin is thought to play a decisive role in the relationships among obesity, insulin resistance and cardiovascular risk. This study investigated whether cardiomyocytes synthesize and secrete adiponectin, and the effects of this hormone on cardiac cells. RT-PCR showed that mouse, rat and human cardiomyocytes produced mRNA for adiponectin and adiponectin receptors 1 and 2. Immunohistochemistry confirmed the presence of adiponectin in the cytoplasm of cultured cardiomyocytes, and radioimmunoassay showed that these cells secreted adiponectin into the culture medium. Exogenous adiponectin enhanced glucose and fatty acid uptake and induced AMPK phosphorylation in cultured cardiomyocytes. Our results demonstrate that adiponectin is synthesized and secreted by isolated murine and human cardiomyocytes, and suggest that the local production of this hormone by cardiomyocytes could be involved in the regulation of cardiac metabolism and function.
The PI3K lipid kinases are involved in signal transduction and intracellular vesicular traffic, endowing these enzymes with multiple cellular functions and important roles in normal physiology and disease. In this mini-review, we aim to distil from the vast PI3K literature the key relevant concepts for successful targeting of this pathway in disease. Of the eight isoforms of PI3K, the class I PI3Ks have been implicated in the aetiology and maintenance of various diseases, most prominently cancer, overgrowth syndromes, thrombosis, inflammation and autoimmunity, with emerging potential roles in metabolic, cardiovascular and other disorders. The development of class I PI3K inhibitors, mainly for use in cancer and inflammatory disorders, is a very active area of drug development. In 2014, an inhibitor of the p110δ isoform of PI3K was approved for the treatment of some human B-cell malignancies. The key therapeutic indications of targeting each class I PI3K isoform are summarized and discussed.
Lysophosphatidylinositol (LPI) is a bioactive lipid generated by phospholipase A2 which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility, in a number of cell-types, including cancer cells, endothelial cells and nervous cells. Despite the fact that LPI-induced cellular functions had been known for more than twenty years, the recent discovery that in several cell-types the orphan G protein-coupled receptor GPR55 acts as the specific receptor for LPI has fuelled novel interest in this lysolipid. Different research groups, including our own, have recently suggested that LPI may be the specific and functional ligand for GPR55, triggering signalling cascades that are relevant to cell proliferation, migration, survival and tumourigenesis. Recently published data suggest that the LPI/GPR55 axis plays an important role in different physiological and pathological contexts. Here we review the available data supporting the role of LPI in cell signalling and the pharmacology of its putative receptor GPR55.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.