Adiponectin is thought to play a decisive role in the relationships among obesity, insulin resistance and cardiovascular risk. This study investigated whether cardiomyocytes synthesize and secrete adiponectin, and the effects of this hormone on cardiac cells. RT-PCR showed that mouse, rat and human cardiomyocytes produced mRNA for adiponectin and adiponectin receptors 1 and 2. Immunohistochemistry confirmed the presence of adiponectin in the cytoplasm of cultured cardiomyocytes, and radioimmunoassay showed that these cells secreted adiponectin into the culture medium. Exogenous adiponectin enhanced glucose and fatty acid uptake and induced AMPK phosphorylation in cultured cardiomyocytes. Our results demonstrate that adiponectin is synthesized and secreted by isolated murine and human cardiomyocytes, and suggest that the local production of this hormone by cardiomyocytes could be involved in the regulation of cardiac metabolism and function.
There is a clear clinical need for high-specificity plasma biomarkers for predicting risk of venous thromboembolism (VTE), but thus far, such markers have remained elusive. Utilizing affinity reagents from the Human Protein Atlas project and multiplexed immuoassays, we extensively analyzed plasma samples from 2 individual studies to identify candidate protein markers associated with VTE risk. We screened plasma samples from 88 VTE cases and 85 matched controls, collected as part of the Swedish "Venous Thromboembolism Biomarker Study," using suspension bead arrays composed of 755 antibodies targeting 408 candidate proteins. We identified significant associations between VTE occurrence and plasma levels of human immunodeficiency virus type I enhancer binding protein 1 (HIVEP1), von Willebrand factor (VWF), glutathione peroxidase 3 (GPX3), and platelet-derived growth factor β (PDGFB). For replication, we profiled plasma samples of 580 cases and 589 controls from the French FARIVE study. These results confirmed the association of VWF and PDGFB with VTE after correction for multiple testing, whereas only weak trends were observed for HIVEP1 and GPX3. Although plasma levels of VWF and PDGFB correlated modestly (ρ ∼ 0.30) with each other, they were independently associated with VTE risk in a joint model in FARIVE (VWF P < .001; PDGFB P = .002). PDGFΒ was verified as the target of the capture antibody by immunocapture mass spectrometry and sandwich enzyme-linked immunosorbent assay. In conclusion, we demonstrate that high-throughput affinity plasma proteomic profiling is a valuable research strategy to identify potential candidate biomarkers for thrombosis-related disorders, and our study suggests a novel association of PDGFB plasma levels with VTE.
The current study aimed to compare the effects of the peptide hormone ghrelin and des-G, its unacylated isoform, on glucose and fatty acid uptake and to identify des-G-specific binding sites in cardiomyocytes. In the murine HL-1 adult cardiomyocyte line, ghrelin and des-G had opposing metabolic effects: des-G increased medium-chain fatty acid uptake (BODIPY fluorescence intensity), whereas neither ghrelin alone nor in combination with des-G did so. Ghrelin inhibited the increase in glucose uptake normally induced by insulin (rate of 2-[(3)H]deoxy-d-glucose incorporation), but des-G did not; des-G was also able to partially reverse the inhibitory effect of ghrelin. In HL-1 cells and primary cultures of neonatal rat cardiomyocytes, des-G but not ghrelin increased insulin-induced translocation of glucose transporter-4 from nuclear to cytoplasmic compartments (immunohistochemistry and quantitative confocal analysis). AKT was phosphorylated by insulin but not affected by ghrelin or des-G, whereas neither AMP-activated protein kinase nor phosphatase and tensin homolog deleted from chromosome 10 was phosphorylated by any treatments. HL-1 and primary-cultured mouse and rat cardiomyocytes each possessed two independent specific binding sites for des-G not recognized by ghrelin (radioreceptor assays). Neither ghrelin nor des-G affected viability (dimethylthiazol diphenyltetrazolium bromide assays), whereas both isoforms were equally protective against apoptosis. Therefore, in cardiomyocytes, des-G binds to specific receptors and has effects on glucose and medium-chain fatty acid uptake that are distinct from those of ghrelin. Real-time PCR indicated that expression levels of ghrelin O-acyltransferase RNA were comparable between HL-1 cells, human myocardial tissue, and human and murine stomach tissue, indicating the possibility of des-G conversion to ghrelin within our model.
Ghrelin is synthesized and secreted by isolated murine and human cardiomyocytes, probably with paracrine/autocrine effects, and may be involved in protecting these cells from apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.