In this combined experimental and simulation investigation, a stream of HFE-7100 droplets striking a prewetted surface under constant heat flux was studied. An implicit free surface capturing technique based on the Volume-of-Fluid (VOF) approach was employed to simulate this process numerically. Experimentally, an infrared thermography technique was used to measure the temperature distribution of the surface consisting of a 100 nm ITO layer on a ZnSe substrate. The heat flux was varied to investigate the heat transfer behavior of periodic droplet impingement at the solid–liquid interface. In both experiments and simulations, the morphology of the impact zone was characterized by a quasi-stationary liquid impact crater. Comparison of the radial temperature profiles on the impinging surface between the experiments and numerical simulations yielded reasonable agreement. Due to the strong radial flow emanating from successive droplet impacts, the temperature distribution inside the crater region was found to be significantly reduced from its saturated value. In effect, the heat transfer mode in this region was governed by single phase convective and conductive heat transfer, and was mostly affected by the HFE-7100 mass flow rates or the number of droplets. At higher heat fluxes, the minimum temperature, and its gradient with respect to the radial coordinate, increased considerably. Numerical comparison between average and instantaneous temperature profiles within the droplet impact region showed the effect of thermal mixing produced by the liquid crowns formed during successive droplet impact events.
For a number of years spray cooling has shown to be a viable alternative for thermal management of high-density electronics. Nevertheless, the key fundamental physical processes are to a large degree poorly understood due mostly to the complicated fluid dynamics resulting from nucleate boiling coupled with spray drop impingement. In this combined experimental and modeling effort, a representative configuration consisting of a liquid film resting on a solid silicon-based substrate with an imposed constant heat flux and an impinging train of droplets has been studied. This configuration mimics to a great degree the physics of spray cooling, while simultaneously simplifying the experimental and computational analysis to a manageable level. It is shown that a number of statistically quasi-stationary states are possible by carefully coordinating the heat flux and drop impingement rates. Studies were both performed for water and FC-72. Due in part to its lower surface tension, the quasi-stationary states for FC-72 were instantaneously much more chaotic than the corresponding water cases. The OpenFoam (open source computational fluid dynamics) code has been supplemented with an energy equation within the existing Volume-of-Fluid infrastructure. This was used to analyze the dynamics in the impingement region. It is shown that the temperature in this region is approximately equal to the temperature of incident droplets. For all water and FC-72 films, it was found that each droplet impact penetrated the entire thickness of the film bringing a significant cooling effect on the heated substrate. This was the case even for film thickness-to-impact droplet diameter ratios far exceeding one.
A primary mechanism of heat transfer in spray cooling is the impingement of numerous droplets onto a heated surface. This mechanism is isolated in the present and ongoing work by numerically simulating the impact of a single train of FC-72 droplets employing an implicit free surface capturing methodology. The droplet frequency and velocity ranges from 2000-4000 Hz, and 0.5-2 m/s, respectively, with a fixed drop size of 239 µm. This gives a corresponding Weber and Reynolds range of 10-170 and 330-1300, respectively. Results show that the impingement zone is largely free of phase change effects due to the efficient suppression of the local temperature field well below the saturated value. Due in part to the relatively high value of the Prandtl number and the compression of the boundary layer from the impingement flow, a cell size on the order of 1 µm is necessary to adequately capture the heat transfer dynamics. It is shown that the cooling behavior increases in relation to increasing frequency and impact velocity, but is most sensitive to velocity. In fact, for sufficiently low velocities the calculations show that the momentum imparted on the film is insufficient to maintain a near stationary liquid crown. The consequence is a noticeable penalty on the cooling behavior.1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.