Loss-of-function mutations in both alleles of the human insulin receptor gene (INSR) cause extreme insulin resistance (IR) and usually death in childhood, with few effective therapeutic options. Bivalent antireceptor antibodies can elicit insulin-like signaling by mutant INSR in cultured cells, but whether this translates into meaningful metabolic benefits in vivo, wherein the dynamics of insulin signaling and receptor recycling are more complex, is unknown. To address this, we adopted a strategy to model human insulin receptoropathy in mice, using Cre recombinase delivered by adeno-associated virus to knockout endogenous hepatic Insr acutely in floxed Insr mice (liver insulin receptor knockout [L-IRKO] + GFP), before adenovirus-mediated add back of wild-type (WT) or mutant human INSR . Two murine anti-INSR monoclonal antibodies, previously shown to be surrogate agonists for mutant INSR, were then tested by intraperitoneal injections. As expected, L-IRKO + GFP mice showed glucose intolerance and severe hyperinsulinemia. This was fully corrected by add back of WT but not with either D734A or S350L mutant INSR. Antibody injection improved glucose tolerance in D734A INSR-expressing mice and reduced hyperinsulinemia in both S350L and D734A INSR-expressing animals. It did not cause hypoglycemia in WT INSR-expressing mice. Antibody treatment also downregulated both WT and mutant INSR protein, attenuating its beneficial metabolic effects. Anti-INSR antibodies thus improve IR in an acute model of insulin receptoropathy, but these findings imply a narrow therapeutic window determined by competing effects of antibodies to stimulate receptors and induce their downregulation.
One Sentence Summary: Bivalent anti-insulin receptor antibodies improve glycaemic control, but downregulate receptor expression, in a novel mouse model of lethal human insulin receptoropathy. AbstractLoss-of-function mutations in both alleles of the human insulin receptor gene (INSR) cause extreme insulin resistance (IR) and usually death in childhood, with few therapeutic options. Bivalent anti-receptor antibodies can elicit insulin-like signaling by mutant INSR in cultured cells, but whether this translates into meaningful metabolic benefits in vivo, where dynamics of insulin signaling and receptor recycling are more complex, is unknown. To address this we adopted a strategy to model human insulin receptoropathy in mice, using Cre recombinase delivered by adeno-associated virus to knock out endogenous hepatic Insr acutely in floxed Insr mice (L-IRKO+GFP), before adenovirus-mediated 'add-back' of wild-type (WT) or mutant human INSR. Two murine anti-INSR monoclonal antibodies, previously shown to be surrogate agonists for mutant INSR, were then tested by intraperitoneal injections. As expected, L-IRKO+GFP mice showed glucose intolerance and severe hyperinsulinemia, and this was fully corrected by add-back of WT but neither D734A nor S350L mutant INSR.Antibody injection improved glucose tolerance in D734A INSR-expressing mice and reduced hyperinsulinemia in both S350L and D734A INSR-expressing animals, and did not cause hypoglycemia in WT INSR-expressing mice.Antibody treatment also downregulated both wild-type and mutant INSR protein, attenuating its beneficial metabolic effects. Anti-INSR antibodies thus improve IR in an acute model of insulin receptoropathy, but these findings imply a narrow therapeutic window determined by competing effects of antibodies to stimulate receptors and induce their downregulation.
Loss-of-function mutations in both alleles of the human insulin receptor gene (INSR) cause extreme insulin resistance (IR) and usually death in childhood, with few effective therapeutic options. Bivalent anti-receptor antibodies can elicit insulin-like signaling by mutant INSR in cultured cells, but whether this translates into meaningful metabolic benefits <i>in vivo</i>, where dynamics of insulin signaling and receptor recycling are more complex, is unknown. To address this we adopted a strategy to model human insulin receptoropathy in mice, using <i>Cre</i> recombinase delivered by adeno-associated virus to knock out endogenous hepatic <i>Insr</i> acutely in floxed <i>Insr</i> mice (L-IRKO+GFP), before adenovirus-mediated ‘add-back’ of wild-type (WT) or mutant human <i>INSR</i>. Two murine anti-INSR monoclonal antibodies, previously shown to be surrogate agonists for mutant INSR, were then tested by intraperitoneal injections. As expected, L-IRKO+GFP mice showed glucose intolerance and severe hyperinsulinemia, and this was fully corrected by add-back of WT but neither D734A nor S350L mutant INSR. Antibody injection improved glucose tolerance in D734A INSR-expressing mice and reduced hyperinsulinemia in both S350L and D734A INSR-expressing animals, and did not cause hypoglycemia in WT INSR-expressing mice. Antibody treatment also downregulated both wild-type and mutant INSR protein, attenuating its beneficial metabolic effects. Anti-INSR antibodies thus improve IR in an acute model of insulin receptoropathy, but these findings imply a narrow therapeutic window determined by competing effects of antibodies to stimulate receptors and induce their downregulation.
Loss-of-function mutations in both alleles of the human insulin receptor gene (INSR) cause extreme insulin resistance (IR) and usually death in childhood, with few effective therapeutic options. Bivalent anti-receptor antibodies can elicit insulin-like signaling by mutant INSR in cultured cells, but whether this translates into meaningful metabolic benefits <i>in vivo</i>, where dynamics of insulin signaling and receptor recycling are more complex, is unknown. To address this we adopted a strategy to model human insulin receptoropathy in mice, using <i>Cre</i> recombinase delivered by adeno-associated virus to knock out endogenous hepatic <i>Insr</i> acutely in floxed <i>Insr</i> mice (L-IRKO+GFP), before adenovirus-mediated ‘add-back’ of wild-type (WT) or mutant human <i>INSR</i>. Two murine anti-INSR monoclonal antibodies, previously shown to be surrogate agonists for mutant INSR, were then tested by intraperitoneal injections. As expected, L-IRKO+GFP mice showed glucose intolerance and severe hyperinsulinemia, and this was fully corrected by add-back of WT but neither D734A nor S350L mutant INSR. Antibody injection improved glucose tolerance in D734A INSR-expressing mice and reduced hyperinsulinemia in both S350L and D734A INSR-expressing animals, and did not cause hypoglycemia in WT INSR-expressing mice. Antibody treatment also downregulated both wild-type and mutant INSR protein, attenuating its beneficial metabolic effects. Anti-INSR antibodies thus improve IR in an acute model of insulin receptoropathy, but these findings imply a narrow therapeutic window determined by competing effects of antibodies to stimulate receptors and induce their downregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.