BackgroundAlmost 3500 tick samples, originally collected via a nationwide citizen science campaign in 2015, were screened to reveal the prevalence and distribution of a wide spectrum of established and putative tick-borne pathogens vectored by Ixodes ricinus and I. persulcatus in Finland. The unique geographical distribution of these two tick species in Finland allowed us to compare pathogen occurrence between an I. ricinus-dominated area (southern Finland), an I. persulcatus-dominated area (northern Finland), and a sympatric area (central Finland).ResultsOf the analysed ticks, almost 30% carried at least one pathogen and 2% carried more than one pathogen. A higher overall prevalence of tick-borne pathogens was observed in I. ricinus than in I. persulcatus: 30.0% (604/2014) versus 24.0% (348/1451), respectively. In addition, I. ricinus were more frequently co-infected than I. persulcatus: 2.4% (49/2014) versus 0.8% (12/1451), respectively. Causative agents of Lyme borreliosis, i.e. bacterial genospecies in Borrelia burgdorferi (sensu lato) group, were the most prevalent pathogens (overall 17%). “Candidatus Rickettsia tarasevichiae” was found for the first time in I. ricinus ticks and in Finnish ticks in general. Moreover, Babesia divergens, B. venatorum and “Candidatus Neoehrlichia mikurensis” were reported for the first time from the Finnish mainland.ConclusionsThe present study provides valuable information on the prevalence and geographical distribution of various tick-borne pathogens in I. ricinus and I. persulcatus ticks in Finland. Moreover, this comprehensive subset of ticks revealed the presence of rare and potentially dangerous pathogens. The highest prevalence of infected ticks was in the I. ricinus-dominated area in southern Finland, while the prevalence was essentially equal in sympatric and I. persulcatus-dominated areas. However, the highest infection rates for both species were in areas of their dominance, either in south or north Finland.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-3131-y) contains supplementary material, which is available to authorized users.
Background In Finland, the routine surveillance of Lyme borreliosis (LB) is laboratory-based. In addition, we have well established national health care registers where countrywide data from patient visits in public health care units are collected. In our previous study based on these registers, we reported an increasing incidence of both microbiologically confirmed and clinically diagnosed LB cases in Finland during the past years. Here, we evaluated our register data, refined LB incidence estimates provided in our previous study, and evaluated treatment practices considering LB in the primary health care. Methods Three national health care registers were used. The Register for Primary Health Care Visits (Avohilmo) and the National Hospital Discharge Register (Hilmo) collect physician-recorded data from the outpatient and inpatient health care visits, respectively, whereas the National Infectious Diseases Register (NIDR) represents positive findings in LB diagnostics notified electronically by microbiological laboratories. We used a personal identification number in register-linkage to identify LB cases on an individual level in the study year 2014. In addition, antibiotic purchase data was retrieved from the Finnish Social Insurance Institution in order to evaluate the LB treatment practices in the primary health care in Finland. Results Avohilmo was found to be useful in monitoring clinically diagnosed LB (i.e. erythema migrans (EM) infections), whereas Hilmo did not add much value next to existing laboratory-based surveillance of disseminated LB. However, Hilmo gave valuable information about uncertainties related to physician-based surveillance of disseminated LB and the total annual number of EM infections in our country. Antibiotic purchases associated with the LB-related outpatient visits in the primary health care indicated a good compliance with the recommended treatment guidelines. Conclusions Avohilmo and laboratory-based NIDR together are useful in monitoring LB incidence in Finland. A good compliance was observed with the recommended treatment guidelines of clinically diagnosed LB in the primary health care. In 2018, Avohilmo was introduced in the routine surveillance of LB in Finland next to laboratory-based surveillance of disseminated LB.
Background: In Finland, the routine surveillance of Lyme borreliosis (LB) is laboratory-based. In addition, we have well established national health care registers where countrywide data from patient visits in public health care units are collected. In our previous study based on these registers, we reported an increasing incidence of both microbiologically confirmed and clinically diagnosed LB cases in Finland during the past years. Here, we evaluated our register data, refined LB incidence estimates provided in our previous study, and evaluated treatment practices considering LB in the primary health care. Methods: Three national health care registers were used. The Register for Primary Health Care Visits (Avohilmo) and the National Hospital Discharge Register (Hilmo) collect physician-recorded data from the outpatient and inpatient health care visits, respectively, whereas the National Infectious Diseases Register (NIDR) represents positive findings in LB diagnostics notified electronically by microbiological laboratories. We used a personal identification number in register-linkage to identify LB cases on an individual level in the study year 2014. In addition, antibiotic purchase data was retrieved from the Finnish Social Insurance Institution in order to evaluate the LB treatment practices in the primary health care in Finland. Results: Avohilmo was found to be useful in monitoring clinically diagnosed LB (i.e. erythema migrans (EM) infections), whereas Hilmo did not add much value next to existing laboratory-based surveillance of disseminated LB. However, Hilmo gave valuable information about uncertainties related to physician-based surveillance of disseminated LB and the total annual number of EM infections in our country. Antibiotic purchases associated with the LB-related outpatient visits in the primary health care indicated a good compliance with the recommended treatment guidelines. Conclusions: Avohilmo and laboratory-based NIDR together are useful in monitoring LB incidence in Finland. A good compliance was observed with the recommended treatment guidelines of clinically diagnosed LB in the primary health care. In 2018, Avohilmo was introduced in the routine surveillance of LB in Finland next to laboratory-based surveillance of disseminated LB.
Background: In Finland, the routine surveillance of Lyme borreliosis (LB) is laboratory-based. In addition, we have well established national health care registers where countrywide data from patient visits in public health care units are collected. In our previous study based on these registers, we reported an increasing incidence of both microbiologically confirmed and clinically diagnosed LB cases in Finland during the past years. Here, we evaluated our register data, refined LB incidence estimates provided in our previous study, and evaluated treatment practices considering LB in the primary health care. Methods: Three national health care registers were used. The Register for Primary Health Care Visits (Avohilmo) and the National Hospital Discharge Register (Hilmo) collect physician-recorded data from the outpatient and inpatient health care visits, respectively, whereas the National Infectious Diseases Register (NIDR) represents positive findings in LB diagnostics notified electronically by microbiological laboratories. We used a personal identification number in register-linkage to identify LB cases on an individual level in the study year 2014. In addition, antibiotic purchase data was retrieved from the Finnish Social Insurance Institution in order to evaluate the LB treatment practices in the primary health care in Finland.Results: Avohilmo was found to be useful in monitoring clinically diagnosed LB (i.e. EM infections), whereas Hilmo did not add much value next to existing laboratory-based surveillance of disseminated LB. However, Hilmo gave valuable information about uncertainties related to physician-based surveillance of disseminated LB and the total annual number of EM infections in our country. Antibiotic purchases associated with the LB-related outpatient visits in the primary health care indicated a good compliance with the recommended treatment guidelines. Conclusions: In 2018, Avohilmo was introduced in the routine surveillance of LB in Finland next to laboratory-based surveillance of disseminated LB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.