The deep carbonate reservoir formation on this field has proven to be an extreme High-temperature (HT) environment for downhole equipment. While drilling the 5000 − 6500 ft 5-7/8" slim long laterals across this formation, very high bottom-hole circulating temperatures is encountered (310-340 degF) which exceeds the operating limitation for the downhole drilling/formation evaluation tools. This resulted in multiple temperature-related failures, unplanned trips and long non-productive-time. It became necessary to provide solution to reduce the BHCT-related failures. Performed offset-wells-analysis to identify the BHT regime across the field, create a heat-map and correlate/compare actual formation-temperatures with the formation-temperature-gradient provided by the operator (1.4-1.8 degF/100-ft). Drilling reports/MWD/LWD/wireline logs were reviewed/analyzed. Discovered the tools had a maximum-temperature-rating of 300-302 degF and were run outside-technical-limits. Temperature-related-failures were predominant in long slim-laterals, which indicated that some of the heat was generated by high flow rate/RPM and solids in the system. Tried drilling with low-RPM/FR, without meaningful-temperature-reduction. After detailed risk-assessment and analysis on other contributing factors in the drilling process, opted to incorporate mud-chiller into the surface circulating-system to cool-down the drilling mud. Upon implementation of the mud chiller system, observed up to 40 degF reduction in surface temperature (i.e. temperature-difference between the mud entering/leaving mud chiller). This was achieved because the unit was set-up to process at least twice the rate that was pumped downhole. Also observed reduction in the bottomhole circulating temperature to below 300 degF, thus ensuring the drilling environment met the tool specifications. The temperature-related tools failure got eliminated. On some of the previous wells, wireline logging tools have been damaged due to high encountered downhole temperature as circulation was not possible prior-to or during logging operation. The implementation of the mud-chiller system has made it possible for innovative logging through-the-bit logging application to be implemented. This allows circulation of cool mud across the entire open hole prior to deployment of tools to perform logging operation. This has made it possible for same logging tool to be used for multiple jobs without fear of tool electronic-components failure die to exposure to extreme temperatures. The long non-productive time due to temperature-related tool failures got eliminated. The numerous stuck pipes events due to hole deterioration resulting from multiple round trips also got eliminated. Overall drilling operations became more efficient. The paper will describe the drilling challenges, the systematic approach implemented to arrive at optimized solution. It will show how good understanding of drilling challenges and tailored-solutions delivers great gains. The authors will show how this system was used to provide a true step-change in performance in this challenging environment.
While drilling the 12" section, a water bearing formation is encountered prior to reaching the target gas reservoir formation. This formation is sporadically-charged across the field requiring a KMW up to 21 ppg. This poses major well integrity challenges as it becomes critical to avoid losses in the resulting narrow mud window and ensuring proper cement placement. Inability to predict the mud window makes it impossible to define the drilling strategy to implement. To understand the drilling challenges, in-depth offset wells analysis was performed. Based on mud weights required to drill across the reference formation, the heat-map for historical KMW was created based on confirmed well control events. It was difficult to predict formation-flow potential. Field geomechanics studies were then carried out to correlate the mapping done earlier. Once possibility of encountering abnormally pressured formation is flagged, in order prevent drilling risks such as loss circulation and poor cementing placement, proactive measures such as: Improved influx monitoring, drilling/cementing fluids optimization, liner-and-tieback system implementation, Managed Pressure Drilling/Cementing, optimized casing design were put in place. The integrated approach led to quick influx detection, proper definition of mud window, i.e. Pore Pressure and Fracture Gradient together, helped to prevent the losses, design of fit-for-purpose bridging strategy to ensure full drilling fluid column at all time while avoiding the cost associated with fluid losses. Drilling the section with Managed Pressure Drilling system (MPD) and low mud weight led to achievement of high ROP leading to substantial time saving. The Liner string was run and Managed Pressure Cementing (MPC) was implemented to manage the equivalent circulating density (ECD), avoid losses and ensure good zonal isolation. Overall non-productive time was reduced by 40% as compared to the offset wells in the area. Integrated drilling approach delivers great gains when there is good understanding of the well integrity challenges and solutions are tailored to solve identified problems.
The deep carbonate reservoir formation on this field has proven to be an extreme High-temperature (HT) environment for downhole equipment. While drilling the 5000 - 6500 ft 5-7/8" slim long laterals across this formation, very high bottom-hole circulating temperatures is encountered (310-340 degF) which exceeds the operating limitation for the downhole drilling/formation evaluation tools. This resulted in multiple temperature-related failures, unplanned trips and long non-productive-time. It became necessary to provide solution to reduce the BHCT-related failures. Performed offset-wells-analysis to identify the BHT regime across the entire-field, create a heat-map and correlate/compare actual formation-temperatures with the formation-temperature-gradient provided by the operator (1.4-1.8 degF/100-ft). Drilling reports and MWD/LWD/wireline logs were reviewed/analyzed. Reviewed tools-spec-sheets, discovered most of the tools had a maximum-temperature-rating of 300-302 degF and were run outside-technical-limits. Observed temperature-related-failures were predominant in very long slim-laterals, which indicated that some of the heat was generated by high flow rate/RPM and solids in the system. Tried drilling with low-RPM/FR, did not achieve meaningful-temperature-reduction. After detailed risk-assessment and analysis on other contributing factors in the drilling process, opted to incorporate mud-chiller into the surface circulating-system to cool-down the mud going into the well. Upon implementation of the mud chiller system, observed up to 40 degF reduction in surface temperature (i.e. temperature-difference between the mud entering/leaving mud chiller). This was achieved because the unit was set-up to process at least twice the rate that was pumped downhole. Also observed reduction in the bottom-hole circulating temperature to below 300 degF, thus ensuring the drilling environment met the tool specifications. The temperature-related tools failure got eliminated. On some of the previous wells, wireline logging tools have been damaged due to high encountered downhole temperature as circulation was not possible prior-to or during logging operation. The implementation of the mud-chiller system has made it possible for innovative logging thru-bit logging application to be implemented. This allows circulation of cool mud across the entire open hole prior to deployment of tools to perform logging operation. This has made it possible for same logging tool to be used for multiple jobs without fear of tool electronic-components failure die to exposure to extreme temperatures. The long non-productive time due to temperature-related tool failures got eliminated. The numerous stuck pipes events due to hole deterioration resulting from multiple round trips also got eliminated. Overall drilling operations became more efficient. The paper will describe the drilling challenges, the systematic approach implemented to arrive at optimized solution. It will show how good understanding of drilling challenges and tailored-solutions delivers great gains. The authors will show how this system was used to provide a true step-change in performance in this challenging environment.
The deep carbonate reservoir formation on this field has proven to be an extreme High-temperature (HT) environment for downhole equipment. While drilling the 5000 - 6500 ft 5-7/8" slim long laterals across this formation, very high bottom-hole circulating temperatures is encountered (310-340 degF) which exceeds the operating limitation for the downhole drilling/formation evaluation tools. This resulted in multiple temperature-related failures, unplanned trips and long non-productive-time. It became necessary to provide solution to reduce the BHCT-related failures. Performed offset-wells-analysis to identify the BHT regime across the entire-field, create a heat-map and correlate/compare actual formation-temperatures with the formation-temperature-gradient provided by the operator (1.4-1.8 degF/100-ft). Drilling reports and MWD/LWD/wireline logs were reviewed/analyzed. Reviewed tools-spec-sheets, discovered most of the tools had a maximum-temperature-rating of 300-302 degF and were run outside-technical-limits. Observed temperature-related-failures were predominant in very long slim-laterals, which indicated that some of the heat was generated by high flow rate/RPM and solids in the system. Tried drilling with low-RPM/FR, did not achieve meaningful-temperature-reduction. After detailed risk-assessment and analysis on other contributing factors in the drilling process, opted to incorporate mud-chiller into the surface circulating-system to cool-down the mud going into the well. Upon implementation of the mud chiller system, observed up to 40 degF reduction in surface temperature (i.e. temperature-difference between the mud entering/leaving mud chiller). This was achieved because the unit was set-up to process at least twice the rate that was pumped downhole. Also observed reduction in the bottom-hole circulating temperature to below 300 degF, thus ensuring the drilling environment met the tool specifications. The temperature-related tools failure got eliminated. On some of the previous wells, wireline logging tools have been damaged due to high encountered downhole temperature as circulation was not possible prior-to or during logging operation. The implementation of the mud-chiller system has made it possible for innovative logging thru-bit logging application to be implemented. This allows circulation of cool mud across the entire open hole prior to deployment of tools to perform logging operation. This has made it possible for same logging tool to be used for multiple jobs without fear of tool electronic-components failure die to exposure to extreme temperatures. The long non-productive time due to temperature-related tool failures got eliminated. The numerous stuck pipes events due to hole deterioration resulting from multiple round trips also got eliminated. Overall drilling operations became more efficient. The paper will describe the drilling challenges, the systematic approach implemented to arrive at optimized solution. It will show how good understanding of drilling challenges and tailored-solutions delivers great gains. The authors will show how this system was used to provide a true step-change in performance in this challenging environment.
On a Deep Gas Field in the Middle East, it is required to drill across a highly fractured and faulted carbonate formation. In most wells drilled across the flank of this field, it is impossible to cure the encountered losses with conventional or engineered solutions. Average time to cure losses is 20 days. With the current drive for cost optimization, it has become necessary to eliminate the NPT associated with curing the losses. A thorough risk assessment was conducted for wells drilled on the flank of this field, it was established that the risk of encountering total losses was very high. Seismic studies were performed and it was observed it would be impossible to eliminate total losses as fractures were propagated in all directions. It was proposed to run a sacrificial open hole bridge plug above the loss zone and sidetrack the well instead of performing extensive remedial operations. The proposed solution would help eliminate the well control and HSE risks associated with drilling blindly ahead with the reservoir formation exposed. Applied the proposed solution on the next well that was drilled on the flank of the field, encountered total losses, spotted eight LCM pills, unable to cure the losses, ran sacrificial open hole bridge plug and sidetracked the well. The entire process was completed in 30 hours. Sidetracked the well in adjacent direction to the initial planned well trajectory based on further seismic data analysis and no losses was encountered. Recovered full mud column to surface thus ensuring the restoration of all well barrier elements. This solution has since been adopted as best practice for wells drilled on the flank of the field where there is high probability of encountering total losses. The average time saving per well due to this optimized solution is 450 hours for wells where total losses are encountered. This engineered solution has made drilling wells on the flank of the field in a timely manner possible and at optimized costs. This has resulted in: –The elimination of Non-Productive Time,–Quick delivery of the well to production,–Reduced HSE risk,–Reduced well control risk as loss zone is quickly isolated before drilling ahead. This paper will explain why running sacrificial open hole bridge plugs and sidetracking the well is a more effective solution compared to extended remedial operations when total losses are encountered while drilling across highly fractured / faulted formation. It will discuss the extensive risk assessment conducted, the mitigation and prevention measures that were put in place in order to ensure successful implementation on trial well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.