Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs) and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF) is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs) and the tissue inhibitors of these metalloproteinases (TIMPs). MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.
Background: Hypermethylation in promoter regions of genes might lead to altered gene functions and result in malignant cellular transformation. Thus, biomarker identification for hypermethylated genes would be very useful for early diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC). The objectives of this study were to screen and validate differentially hypermethylated genes in OSCC and correlate the hypermethylation-induced genes with demographic, clinocopathological characteristics and survival rate of OSCC.Methods: DNA methylation profiling was utilized to screen the differentially hypermethylated genes in OSCC. Three selected differentially-hypermethylated genes of p16, DDAH2 and DUSP1 were further validated for methylation status and protein expression. The correlation between demographic, clinicopathological characteristics, and survival rate of OSCC patients with hypermethylation of p16, DDAH2 and DUSP1 genes were analysed in the study.Results: Methylation profiling demonstrated 33 promoter hypermethylated genes in OSCC. The differentially-hypermethylated genes of p16, DDAH2 and DUSP1 revealed positivity of 78%, 80% and 88% in methylation-specific polymerase chain reaction and 24% and 22% of immunoreactivity in DDAH2 and DUSP1 genes, respectively. Promoter hypermethylation of p16 gene was found significantly associated with tumour site of buccal, gum, tongue and lip (P=0.001). In addition, DDAH2 methylation level was correlated significantly with patients' age (P=0.050). In this study, overall five-year survival rate was 38.1% for OSCC patients and was influenced by sex difference.Conclusions: The study has identified 33 promoter hypermethylated genes that were significantly silenced in OSCC, which might be involved in an important mechanism in oral carcinogenesis. Our approaches revealed signature candidates of differentially hypermethylated genes of DDAH2 and DUSP1 which can be further developed as potential biomarkers for OSCC as diagnostic, prognostic and therapeutic targets in the future.
BackgroundLimb salvage surgery is a treatment of choice for sarcomas of the extremities. One of the options in skeletal reconstruction after tumour resection is by using a recycled bone autograft. The present accepted methods of recycling bone autografts include autoclaving, pasteurization and irradiation. At the moment there is lack of studies that compare the effectiveness of various sterilization methods used for recycling bone autografts and their effects in terms of bone incorporation. This study was performed to determine the effects of different methods of sterilization on bone autografts in rabbit by radiological, biomechanical and histopathological evaluations.MethodsFresh rabbit cortical bone is harvested from the tibial diaphysis and sterilized extracorporeally by pasteurization (n = 6), autoclaving (n = 6), irradiation (n = 6) and normal saline as control group (n = 6). The cortical bones were immediately reimplanted after the sterilization process. The subsequent process of graft incorporation was examined over a period of 12 weeks by serial radiographs, biomechanical and histopathological evaluations. Statistical analysis (ANOVA) was performed on these results. Significance level (α) and power (β) were set to 0.05 and 0.90, respectively.ResultsRadiographic analysis showed that irradiation group has higher score in bony union compared to other sterilization groups (p = 0.041). ANOVA analysis of ‘failure stress’, ‘modulus’ and ‘strain to failure’ demonstrated no significant differences (p = 0.389) between treated and untreated specimens under mechanical loading. In macroscopic histopathological analysis, the irradiated group has the highest percentage of bony union (91.7 percent). However in microscopic analysis of union, the pasteurization group has significantly higher score (p = 0.041) in callus formation, osteocytes percentage and bone marrow cellularity at the end of the study indicating good union potential.ConclusionsThis experimental study shown that both irradiation and pasteurization techniques have more favourable outcome in terms of bony union based on radiographic and histopathological evaluations. Autoclaving has the worst outcome. These results indicate that extracorporeal irradiation or pasteurization of bone autografts, are viable option for recycling bone autografts. However, pasteurization has the best overall outcomes because of its osteocytes preservation and bone marrow cellularity.
Raised leptin levels have been reported in the placentae and serum of women with elevated blood pressure and proteinuria during pregnancy. The role of leptin in this however remains unknown. This study investigates the effect of leptin administration on systolic blood pressure (SBP) and proteinuria and serum markers of endothelial activation during pregnancy in Sprague Dawley rats. From day 1 of pregnancy, 24 rats were randomised into those given either saline (group 1) or leptin at 60 or 120 μg/kg/body weight/day (groups 2 and 3 resp.). SBP was measured every 5 days and 24-h urinary protein was measured at days 0 and 20 of pregnancy. Animals were euthanised on day 20 of pregnancy, and serum was collected for estimation of E-selectin and ICAM-1. Compared to group 1, SBP during the latter part of the pregnancy was significantly higher in the leptin-treated group (P < 0.01). Urinary protein excretion, serum E-selectin, and ICAM-1 were significantly higher in leptin-treated rats (P < 0.05). It seems that leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases SBP, urinary protein excretion, and markers of endothelial activation. However, further studies are required to examine the underlying mechanism responsible for this and its relevance to preeclampsia in humans.
Sarcocystis sp. infection was investigated in 20 necropsied captive wild mammals and 20 birds in 2 petting zoos in Malaysia. The gross post-mortem lesions in mammals showed marbling of the liver with uniform congestion of the intestine, and for birds, there was atrophy of the sternal muscles with hemorrhage and edema of the lungs in 2 birds. Naked eye examination was used for detection of macroscopic sarcocysts, and muscle squash for microscopic type. Only microscopically visible cysts were detected in 8 animals and species identification was not possible. Histological examination of the sections of infected skeletal muscles showed more than 5 sarcocysts in each specimen. No leukocytic infiltration was seen in affected organs. The shape of the cysts was elongated or circular, and the mean size reached 254 × 24.5 mm and the thickness of the wall up to 2.5 mm. Two stages were recognized in the cysts, the peripheral metrocytes and large numbers of crescent shaped merozoites. Out of 40 animals examined, 3 mammals and 5 birds were positive (20%). The infection rate was 15% and 25% in mammals and birds, respectively. Regarding the organs, the infection rate was 50% in the skeletal muscles followed by tongue and heart (37.5%), diaphragm (25%), and esophagus (12.5%). Further ultrastructural studies are required to identify the species of Sarcocystis that infect captive wild animals and their possible role in zoonosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.