Gibberellins (GAs) function not only to promote the growth of plant organs, but also to induce phase transitions during development. Their involvement in flower initiation in long-day (LD) and biennial plants is well established and there is growing insight into the mechanisms by which floral induction is achieved. The extent to which GAs mediate the photoperiodic stimulus to flowering in LD plants is, with a few exceptions, less clear. Despite evidence for photoperiod-enhanced GA biosynthesis in leaves of many LD plants, through up-regulation of GA 20-oxidase gene expression, a function for GAs as transmitted signals from leaves to apices in response to LD has been demonstrated only in Lolium species. In Arabidopsis thaliana, as one of four quantitative floral pathways, GA signalling has a relatively minor influence on flowering time in LD, while in SD, in the absence of the photoperiod flowering pathway, the GA pathway assumes a major role and becomes obligatory. Gibberellins promote flowering in Arabidopsis through the activation of genes encoding the floral integrators SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), LEAFY (LFY), and FLOWERING LOCUS T (FT) in the inflorescence and floral meristems, and in leaves, respectively. Although GA signalling is not required for floral organ specification, it is essential for the normal growth and development of these organs. The sites of GA production and action within flowers, and the signalling pathways involved are beginning to be revealed.
Rhizomania is a soil-borne disease that occurs throughout the major sugar beet growing regions of the world, causing severe yield losses in the absence of effective control measures. It is caused by Beet necrotic yellow vein virus (BNYVV), which is transmitted by the obligate root-infecting parasite Polymyxa betae. BNYVV has a multipartite RNA genome with all natural isolates containing four RNA species, although some isolates have a fifth RNA. The larger RNA1 and RNA2 contain the housekeeping genes of the virus and are always required for infection, whereas the smaller RNAs are involved in pathogenicity and vector transmission. RNA5-containing isolates are restricted to Asia and some parts of Europe, and these isolates tend to be more aggressive. With no acceptable pesticides available to restrict the vector, the control of rhizomania is now achieved almost exclusively through the use of resistant cultivars. A single dominant resistance gene, Rz1, has been used to manage the disease worldwide in recent years, although this gene confers only partial resistance. More recently, new variants of BNYVV have evolved (both with and without RNA5) that are able to cause significant yield penalties on resistant cultivars. These isolates are not yet widespread, but their appearance has resulted in accelerated searches for new sources of resistance to both the virus and the vector. Combined virus and vector resistance, achieved either by conventional or transgenic breeding, offers the sugar beet industry a new approach in its continuing struggle against rhizomania.
A contiguous assembly of the inbred ‘EL10’ sugar beet (Beta vulgaris ssp. vulgaris) genome was constructed using PacBio long read sequencing, BioNano optical mapping, Hi-C scaffolding, and Illumina short read error correction. The EL10.1 assembly was 540 Mb, of which 96.7% was contained in nine chromosome-sized pseudomolecules with lengths from 52 to 65 Mb, and 31 contigs with a median size of 282 kb that remained unassembled. Gene annotation incorporating RNAseq data and curated sequences via the MAKER annotation pipeline generated 24,255 gene models. Results indicated that the EL10.1 genome assembly is a contiguous genome assembly highly congruent with the published sugar beet reference genome. Gross duplicate gene analyses of EL10.1 revealed little large-scale intra-genome duplication. Reduced gene copy number for well-annotated gene families relative to other core eudicots was observed, especially for transcription factors. Variation in genome size in B. vulgaris was investigated by flow cytometry among 50 individuals producing estimates from 633 to 875 Mb/1C. Read depth mapping with short-read whole genome sequences from other sugar beet germplasm suggested that relatively few regions of the sugar beet genome appeared associated with high-copy number variation.
Adaptation genes have a major role to play in the response of plants to environmental changes. Flowering time is a key adaptive trait, responding to environmental and endogenous signals that ensure reproductive growth and devel- opment occurs under favorable environmental conditions. Under a climate change scenario, temperature and water conditions are forecast to change and/or ???uctuate, while photoperiods will remain constant at any given latitude. By assessing the current knowledge of the ???owering-time pathways in both model (Arabidopsis thaliana) and key cereal (rice, barley, wheat, maize), temperate forage and biofuel grasses (perennial ryegrass, Miscanthus, sugarcane), root (sugar beet), and tree (poplar) crop species, it is possible to de???ne key breeding targets for promoting adaptation and yield stability under future climatic conditions. In Arabidopsis, there are four pathways controlling ???owering time, and the genetic and/or epigenetic control of many of the steps in these pathways has been well characterized. Despite A.R. Bentley ??? I.J. Mackay ??? E. Mutasa-Go ??ttgens ??? J. Cockram (*) The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge CB3 0LE, UK e-mail: james.cockram@niab.com E.F. Jensen ??? I.P. Armstead ??? C. Hayes ??? D. Thorogood ??? A. Lovatt Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth SY23 3EB, UK H. Ho ??nicka ??? M. Fladung Johann Heinrich von Thu ??nen Institute, Institute of Forest Genetics, Sieker Landstr. 2, 22927 Grosshansdorf, Germany K. Hori ??? M. Yano National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan J.E. Mullet Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA R. Morris ??? N. Pullen Computational and Systems Biology Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK C. Kole (ed.), Genomics and Breeding for Climate-Resilient Crops, Vol. 2, DOI 10.1007/978-3-642-37048-9_1, ?? Springer-Verlag Berlin Heidelberg 2013 1 this, even in this model species, there is little published information on the molecu- lar basis of adaptation to the environment. In contrast, in crop and tree species, ???owering time has been continually selected, either directly or indirectly as breeders and growers have selected the material that best suits a particular location. Understanding the genetic basis of this adaptive selection is now being facilitated via cloning of major genes, the mapping of QTL, and the use of marker-assisted breeding for speci???c ???owering targets. In crop species where the genetic basis of ???owering is not well understood (i.e., in the emerging biofuel grass, Miscanthus), such work is in its infancy. In cases where the genetic basis is well established, however, there are still grounds for important discovery, via new and emerging methods for mapping and selecting for ???owering-time traits (i.e., QTL mapping in MAGIC populations, RABID selection), as well as methods for creating new genetic combinations with...
The transition from vegetative growth to reproductive development is a complex process that requires an integrated response to multiple environmental cues and endogenous signals. In Arabidopsis thaliana, which has a facultative requirement for vernalization and long days, the genes of the autonomous pathway function as floral promoters by repressing the central repressor and vernalization-regulatory gene FLC. Environmental regulation by seasonal changes in daylength is under control of the photoperiod pathway and its key gene CO. The root and leaf crop species Beta vulgaris in the caryophyllid clade of core eudicots, which is only very distantly related to Arabidopsis, is an obligate long-day plant and includes forms with or without vernalization requirement. FLC and CO homologues with related functions in beet have been identified, but the presence of autonomous pathway genes which function in parallel to the vernalization and photoperiod pathways has not yet been reported. Here, this begins to be addressed by the identification and genetic mapping of full-length homologues of the RNA-regulatory gene FLK and the chromatin-regulatory genes FVE, LD, and LDL1. When overexpressed in A. thaliana, BvFLK accelerates bolting in the Col-0 background and fully complements the late-bolting phenotype of an flk mutant through repression of FLC. In contrast, complementation analysis of BvFVE1 and the presence of a putative paralogue in beet suggest evolutionary divergence of FVE homologues. It is further shown that BvFVE1, unlike FVE in Arabidopsis, is under circadian clock control. Together, the data provide first evidence for evolutionary conservation of components of the autonomous pathway in B. vulgaris, while also suggesting divergence or subfunctionalization of one gene. The results are likely to be of broader relevance because B. vulgaris expands the spectrum of evolutionarily diverse species which are subject to differential developmental and/or environmental regulation of floral transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.