A number of applications require to compute an approximation of the diagonal of a matrix when this matrix is not explicitly available but matrix-vector products with it are easy to evaluate. In some cases, it is the trace of the matrix rather than the diagonal that is needed. This paper describes methods for estimating diagonals and traces of matrices in these situations. The goal is to obtain a good estimate of the diagonal by applying only a small number of matrix-vector products, using selected vectors. We begin by considering the use of random test vectors and then explore special vectors obtained from Hadamard matrices. The methods are tested in the context of computational materials science to estimate the diagonal of the density matrix which holds the charge densities. Numerical experiments indicate that the diagonal estimator may offer an alternative method that in some cases can greatly reduce computational costs in electronic structures calculations.
Abstract-This paper considers the problem of dimensionality reduction by orthogonal projection techniques. The main feature of the proposed techniques is that they attempt to preserve both the intrinsic neighborhood geometry of the data samples and the global geometry. In particular we propose a method, named Orthogonal Neighborhood Preserving Projections, which works by first building an "affinity" graph for the data, in a way that is similar to the method of Locally Linear Embedding (LLE). However, in contrast with the standard LLE where the mapping between the input and the reduced spaces is implicit, ONPP employs an explicit linear mapping between the two. As a result, handling new data samples becomes straightforward, as this amounts to a simple linear transformation. We show how to define kernel variants of ONPP, as well as how to apply the method in a supervised setting. Numerical experiments are reported to illustrate the performance of ONPP and to compare it with a few competing methods.
Abstract-In the past few years, the problem of distributed consensus has received a lot of attention, particularly in the framework of ad hoc sensor networks. Most methods proposed in the literature address the consensus averaging problem by distributed linear iterative algorithms, with asymptotic convergence of the consensus solution. The convergence rate of such distributed algorithms typically depends on the network topology and the weights given to the edges between neighboring sensors, as described by the network matrix. In this paper, we propose to accelerate the convergence rate for given network matrices by the use of polynomial filtering algorithms. The main idea of the proposed methodology is to apply a polynomial filter on the network matrix that will shape its spectrum in order to increase the convergence rate. Such an algorithm is equivalent to periodic updates in each of the sensors by aggregating a few of its previous estimates. We formulate the computation of the coefficients of the optimal polynomial as a semidefinite program that can be efficiently and globally solved for both static and dynamic network topologies. We finally provide simulation results that demonstrate the effectiveness of the proposed solutions in accelerating the convergence of distributed consensus averaging problems.
Abstract. This paper gives an overview of the eigenvalue problems encountered in areas of data mining that are related to dimension reduction. Given some input high-dimensional data, the goal of dimension reduction is to map them to a lowdimensional space such that certain properties of the initial data are preserved. Optimizing the above properties among the reduced data can be typically posed as a trace optimization problem that leads to an eigenvalue problem. There is a rich variety of such problems and the goal of this paper is to unravel relations between them as well as to discuss effective solution techniques. First, we make a distinction between projective methods that determine an explicit linear projection from the high-dimensional space to the low-dimensional space, and nonlinear methods where the mapping between the two is nonlinear and implicit. Then, we show that all of the eigenvalue problems solved in the context of explicit projections can be viewed as the projected analogues of the so-called nonlinear or implicit projections. We also discuss kernels as a means of unifying both types of methods and revisit some of the equivalences between methods established in this way. Finally, we provide some illustrative examples to showcase the behavior and the particular characteristics of the various dimension reduction methods on real world data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.