Wheat landraces are currently being explored mainly as a source of allelic variation related to crop resilience and low-input adaptation. Characterization of their high- and low-molecular weight glutenin subunits can aid breeders to select as donor local materials those ensuring good end-use properties in the derived elite cultivars. By using protein electrophoretic methods, we have determined the prolamin allelic profile of 116 Spanish durum wheat landraces. Their quality properties (as defined by grain protein content, sodium dodecyl sulfate (SDS) sedimentation volume and mixograph behavior) have also been assessed. The study has identified six novel glutenin alleles plus some other rare alleles some of which have been associated with improved durum wheat quality. Most of the novel variation detected needs to be characterized in a wider sample of varieties to establish any eventual beneficial effect on functional quality. Further analysis of the quality properties associated to specific allele combinations of Glu-A3, Glu-B3, and Glu-A1 has disclosed some clues on the influence on quality of certain non-allelic interactions between these main prolamin-encoding loci. Some of the landraces, showing outstanding values for the gluten quality parameters analyzed, might be directly used by farmers interested in the cultivation of traditional varieties for specialized food markets.
Future progress on the creation of wheat cultivars with high grain zinc (Zn) and iron (Fe) mineral density will depend on both the availability of suitable donor germplasm and the identification of genes or quantitative trait loci contributing to increase the accumulation of mineral elements in the wheat kernels. Multi-environment field trials were conducted to evaluate the grain Zn, Fe and protein concentration of 32 bread wheat (Triticum aestivum L.) and 20 durum wheat (T. turgidum L. var. durum) landraces locally adapted to soils covering a wide range of pH values and mineral composition. These landraces were selected after a preliminary, small-scale field trial that had analysed 425 Spanish local varieties. Analyses of variance demonstrated a significant effect of genotype on grain composition, and 16 wheat landraces with elevated grain Zn and/or Fe density across the environments were identified. These landraces rich in grain minerals represent valuable primary gene-pool parents for wheat biofortification. No pattern of native soil geochemical characteristics that could help to predict the success in collecting mineral-dense genotypes in a given area was found. Mapping populations derived from some pairs of grain-mineral-rich and -poor genotypes characterised in the study may facilitate the development of molecular markers to assist the selection of superior wheat genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.