El incremento y estabilización del carbono orgánico del suelo (COS) representa una alternativa viable para la mitigación del efecto invernadero. Pero el COS es severamente afectado por los cambios del suelo, existiendo controversias sobre cuáles tipos de uso de la tierra favorecen el secuestro de carbono. El clima tiene efecto importante sobre la dinámica del COS, por tanto el efecto generado por el uso y manejo del suelo es distinto en climas fríos y cálidos. Para entender como los factores clima, uso del suelo y profundidad del suelo, afectan la dinámica del COS en dos lugares del departamento de Norte de Santander en Colombia, se evaluaron propiedades físicas (arenas, limos y arcillas, densidad aparente) y propiedades químicas (pH, conductividad eléctrica, capacidad de intercambio catiónico y saturación de bases). Se determinó el contenido de carbono orgánico total (COT), fracción ligera (CO de FL), fracción húmica (CO de FH) y biomasa microbiana (CO de BM). Estas evaluaciones se realizaron en dos climas contrastantes (frío y cálido), tres tipos de uso del suelo (bosque, pasturas y cultivo intensivo) y tres profundidades (0 a 5 cm, 5 a 10 cm y 10 a 20 cm). Se encontró que hay mayor carbono orgánico en todos los compartimientos (COT, CO de BM, CO de FL y CO de FH) del suelo en clima frío. Los usos del suelo en bosque y pastura, son más favorables para el almacenamiento de COS en clima frío, mientras en cultivo intensivo genera menor contenido de COT, CO de FL y CO de BM. El índice de humificación y el CO de FH fueron mayores en cultivo intensivo de clima cálido.
The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organicmatter (SOM) content. Therefore, it is necessary to know therelationship between aggregate stability and the content of SOMin different types of soil use at two different altitudes of theColombian Andes. This study examined the conditions of soilaggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR.
After changes in tillage on croplands, it is necessary to assess the effects on soil organic carbon (SOC) dynamics in order to identify if soil is a sink or emitter of carbon to the atmosphere. This study was conducted in two plots of rice cultivation, where tillage and water management changes occurred. A third plot of native forest with Cacao trees was used as reference soil (agroforestry). For SOC balance estimation, measurement of organic carbon (OC) inputs was determined from necromass, roots, microbial biomass, and urea applications. CO2 and CH4 emissions were also measured. Results showed that the change in the use of irrigation and tillage in rice cultivation did not cause significant differences in OC inputs to soil or in outputs due to carbon emissions. Further-more, it was found that both irrigation and tillage management systems in rice cultivation com-pared with agroforestry were management systems with a negative difference between OC inputs and outputs due to CO2 emissions associated with intense stimulation of crop root respiration and microbial activity. The comparison of SOC dynamics between the agroforestry system and rice cultivation systems showed that an agroforestry system is a carbon sink with a positive OC dynamic.
Microorganisms are an essential fraction of soil organic matter, which presence and activity depend directly on soil physical conditions. This study aimed to address the effect of soil temperature and moisture under contrasting macroporosity conditions on soil biological properties. Soil physical-chemical characterization implicated the collection of composite samples and undisturbed surface soil samples (0 to 10 cm). Also, samples of undisturbed surface soil were extracted in 40 polyvinyl chloride cylinders of 18 cm diameter and 20 cm height for the arrangement of soil mesocosm as the experimental units of a completely randomized experiment with a 2x2x3 factorial arrangement. The experiment duration was 21 days, and the soil biological properties measured were microbial biomass (MB) and soil respiration (SR). Macroporosity showed a significant effect on MB, which indicates that aeration pore influences the number of microorganisms in the soil; for the SR, the macroporosity had a not significant effect. The temperature at the ranges established in the experiment did not significantly affect MB, whereas a highly significant effect of temperature over SR was observed. A highly significant effect of soil moisture was observed on MB and SR. Macroporosity, moisture, and temperature are determining factors in the presence of soil microorganisms, both directly and through the interaction between them. Herein the microorganisms have a wide range of thermal adaptation, and the effect of soil temperature can boost soil microorganisms. In turn, it was observed that the microorganisms present are significantly sensitive to the moisture deficit in soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.