Mexico is home to the highest species diversity of pines: 46 species out of 113 reported around the world. Within the great diversity of pines in Mexico, Pinus culminicola Andresen et Beaman, P. jaliscana Perez de la Rosa, P. maximartinenzii Rzed., P. nelsonii Shaw, P. pinceana Gordon, and P. rzedowskii Madrigal et M. Caball. are six catalogued as threatened or endangered due to their restricted distribution and low population density. Therefore, they are of special interest for forest conservation purposes. In this paper, we aim to provide up-to-date information on the spatial distribution of these six pine species according to different historical registers coming from different herbaria distributed around the country by using spatial modeling. Therefore, we recovered historical observations of the natural distribution of each species and modelled suitable areas of distribution according to environmental requirements. Finally, we evaluated the distributions by contrasting changes of vegetation in the period 1991–2016. The results highlight areas of distribution for each pine species in the northeast, west, and central parts of Mexico. The results of this study are intended to be the basis of in situ and ex situ conservation strategies for the endangered Mexican pines.
El objetivo principal fue evaluar la capacidad de dos plataformas satelitales: SPOT y Quickbird® para la estimación de parámetros forestales de interés en un área bajo manejo, localizada en los límites entre el Estado de México y Michoacán. Se comparó la precisión de las estimaciones contra datos de campo. Los parámetros estimados fueron altura total, diámetro normal y carbono aéreo. Se calcularon diferentes índices de vegetación para usarse como variables predictoras y se utilizó la prueba de correlación de Pearson (r) para determinar el grado de asociación de los datos obtenidos en campo con las diferentes variables derivadas de las imágenes de satélite. Las variables respuesta con alta correlación con la predictora y con baja correlación entre sí, fueron seleccionadas para la estimación de cada uno de los parámetros, a través de modelos de regresión. La validación de estos se llevó a cabo usando la raíz del error cuadrático medio (RECM) y RECM relativo de las estimaciones contra los datos medidos en campo. Los resultados mostraron correlaciones negativas importantes (SPOT = -0.60, -0.75; Quickbird = -0.58, -0.80). El análisis de regresión señala buenos ajustes en todos los casos (R2 = 0.59-0.91). Para la validación de los modelos (RECM) se obtuvieron los valores más bajos en diámetros y alturas: 5.15 cm y 2.50 m, respectivamente, en el caso de la imagen SPOT 5 HRG, mientras que con la imagen Quickbird el valor más bajo fue para carbono aéreo (0.77 Mg C).
Various spatial modelling methods and tools have been used in ecology and biogeography. The application of these options serves a dual function: first, they offer information about the potential distribution of species to understand the richness and diversity of unassessed areas. Second, spatial modelling methods employ these predictions to select relevant sites to determine natural conservation areas. In this study, we compared three methods for modelling the spatial distribution of Egg-cone Pine (Pinus oocarpa Schiede), an important non-timber pine in Mexico. The final goal is to estimate suitable areas for the conservation and reproduction of superior individuals (plus trees) of P. oocarpa as a conservation strategy outside the known distribution since this species possesses a high ecological and economic value. The model used were a generalised linear model (GLM) as a parametric regression method, random forest (RF) as a machine-learning method, and the MaxEnt model, a standard procedure, implemented using the Kuenm R package. The results suggest that the models used performed well since the AUROC was between 0.95 and 0.98 in all cases. MaxEnt and random forest approaches provided more conservative predictions for the distribution of suitable areas of plus trees of P. oocarpa than the generalised linear model, but the random forest algorithm achieved the best performance. The results of the study allowed the determination of ex situ conservation areas for P. oocarpa plus trees outside of their known distribution.
En México, uno de los principales agentes de degradación forestal son los insectos descortezadores; entre ellos, Dendroctonus mexicanus es considerado uno de los más agresivos, ya que cada año afecta a varias especies de pino en México. El presente estudio tuvo como objetivo analizar la distribución temporal y espacial de esta especie, a partir de las bases de datos de las notificaciones forestales oficiales, entregadas a la Secretaría de Recursos Naturales (Semarnat) de 2009 a 2018. Las bases de datos se revisaron, analizaron y depuraron. Se correlacionó la variable área ecológica (norte, centro y sur) en la superficie afectada mediante un modelo de efectos fijos. Durante el intervalo de años en estudio, el escarabajo de la corteza se distribuyó en 25 estados de la república mexicana, principalmente en la Sierra Madre Occidental, Sierra Madre Oriental y Eje Neovolcánico Transversal. Los años con mayor número de registros fueron de 2012 a 2014, con presencia en bosques de pino-encino y encino-pino. Nuevo León, Chihuahua, Durango, Zacatecas y Michoacán tuvieron la mayor superficie afectada por D. mexicanus. Michoacán, Oaxaca, Durango, Estado de México, Nuevo León y Chihuahua fueron las entidades que presentaron una mayor cantidad de madera afectada por la plaga. El valor de la prueba global de F2,14 (efectos fijos) fue de 17.99, y el valor p fue de 0.0001. Entre las tres zonas analizadas existen diferencias altamente significativas en cuanto a la variable de respuesta.
Adequate estimation of dasometric parameters such as basal area (AB), above-ground biomass (B), and timber volume (VOL) inmanaged forests is a primary requirement to quantify the role of forests in mitigation climate change mitigation. In this context,forest inventories represent the general technique to estimate dasometric parameters, however, they represent a greater consumptionof time and resources. Using data derived from remote sensors in the dasometric modeling offers huge possibilities as an auxiliarytool in forestry activities. The objective of this work was to obtain a statistical model for each forest variable of interest: basal area,above-ground biomass and timber volume in a temperate forest under management in Zacualtipán, Hidalgo, Mexico, using linearmixed models and LiDAR (Light Detection And Ranging) data as predictor variables. For this, we consider that the cluster samplingunits have spatial correlation with respect to them distributed independently in the field. Metrics derived from LiDAR data wereused to fit the models. The metrics related to height and density of the vegetation presented the highest Pearson correlations (r = 0.52- 0.86) with the different dasometric variables and these were used as predictors in the adjusted models. The results indicated thatthe random effect of the cluster and the use of variance function significantly improved the heteroscedasticity, since the spatialcorrelation of the sites was included. This work showed the potential of using linear mixed models to take advantage of thedependency between sites in the same cluster and improve traditional estimates that do not model this hierarchical relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.