IntroductionEarly risk assessment is the mainstay of management of patients with sepsis. APACHE II is the gold standard prognostic stratification system. A prediction rule that aimed to improve prognostication by APACHE II with the application of serum suPAR (soluble urokinase plasminogen activator receptor) is developed.MethodsA prospective study cohort enrolled 1914 patients with sepsis including 62.2% with sepsis and 37.8% with severe sepsis/septic shock. Serum suPAR was measured in samples drawn after diagnosis by an enzyme-immunoabsorbent assay; in 367 patients sequential measurements were performed. After ROC analysis and multivariate logistic regression analysis a prediction rule for risk was developed. The rule was validated in a double-blind fashion by an independent confirmation cohort of 196 sepsis patients, predominantly severe sepsis/septic shock patients, from Sweden.ResultsSerum suPAR remained stable within survivors and non-survivors for 10 days. Regression analysis showed that APACHE II ≥17 and suPAR ≥12 ng/ml were independently associated with unfavorable outcome. Four strata of risk were identified: i) APACHE II <17 and suPAR <12 ng/ml with mortality 5.5%; ii) APACHE II < 17 and suPAR ≥12 ng/ml with mortality 17.4%; iii) APACHE II ≥ 17 and suPAR <12 ng/ml with mortality 37.4%; and iv) APACHE II ≥17 and suPAR ≥12 ng/ml with mortality 51.7%. This prediction rule was confirmed by the Swedish cohort.ConclusionsA novel prediction rule with four levels of risk in sepsis based on APACHE II score and serum suPAR is proposed. Prognostication by this rule is confirmed by an independent cohort.
IntroductionThe aim of this study was to investigate the kinetics of immunoglobulin M (IgM) during the different stages of sepsis.MethodsIn this prospective multicenter study, blood sampling for IgM measurement was done within the first 24 hours from diagnosis in 332 critically ill patients; in 83 patients this was repeated upon progression to more severe stages. Among these 83 patients, 30 patients with severe sepsis progressed into shock and IgM was monitored daily for seven consecutive days. Peripheral blood mononuclear cells (PBMCs) were isolated from 55 patients and stimulated for IgM production.ResultsSerum IgM was decreased in septic shock compared to patients with systemic inflammatory response syndrome (SIRS) and patients with severe sepsis. Paired comparisons at distinct time points of the sepsis course showed that IgM was decreased only when patients deteriorated from severe sepsis to septic shock. Serial measurements in these patients, beginning from the early start of vasopressors, showed that the distribution of IgM over time was significantly greater for survivors than for non-survivors. Production of IgM by PBMCs was significantly lower at all stages of sepsis compared with healthy controls.ConclusionsSpecific changes of circulating IgM occur when patients with severe sepsis progress into septic shock. The distribution of IgM is lower among non-survivors.
In patients receiving hydrocortisone for septic shock, early initiation of treatment was associated with improved survival. This treatment was also associated with attenuated stimulation of tumor necrosis factor-α.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.