Posttranslational modification of proliferating cell nuclear antigen (PCNA), an essential processivity clamp for DNA polymerases, by ubiquitin and SUMO contributes to the coordination of DNA replication, damage tolerance, and mutagenesis. Whereas ubiquitination in response to DNA damage promotes the bypass of replication-blocking lesions, sumoylation during S phase is damage independent. As both modifiers target the same site on PCNA, an antagonistic action of SUMO on ubiquitin-dependent DNA damage tolerance has been proposed. We now present evidence that the apparent negative effect of SUMO on lesion bypass is not due to competition with ubiquitination but is rather mediated by the helicase Srs2p, which affects genome stability by suppressing unscheduled homologous recombination. We show that Srs2p physically interacts with sumoylated PCNA, which contributes to the recruitment of the helicase to replication forks. Our findings suggest a mechanism by which SUMO and ubiquitin cooperatively control the choice of pathway for the processing of DNA lesions during replication.
The elucidation of genetic causes of cholestasis has proved to be important in understanding the physiology and pathophysiology of the liver. Protein-truncating mutations in the tight junction protein 2 gene (TJP2) are shown to cause failure of protein localisation, with disruption of tight-junction structure leading to severe cholestatic liver disease. This contrasts with the embryonic-lethal knockout mouse, highlighting differences in redundancy in junctional complexes between organs and species.
Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect. © 2013 Macmillan Publishers Limited. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.