There is a significant tendency in the industry for automation of the engineering design process. This requires the capability of analyzing an existing design and proposing or ideally generating an optimal design using numerical optimization. In this context, efficient and robust realization of such a framework for numerical shape optimization is of prime importance. Another requirement of such a framework is modularity, such that the shape optimization can involve different physics. This requires that different physics solvers should be handled in black-box nature. The current contribution discusses the conceptualization and applications of a general framework for numerical shape optimization using the vertex morphing parametrization technique. We deal with both 2D and 3D shape optimization problems, of which 3D problems usually tend to be expensive and are candidates for special attention in terms of efficient and high-performance computing. The paper demonstrates the different aspects of the framework, together with the challenges in realizing them. Several numerical examples involving different physics and constraints are presented to show the flexibility and extendability of the framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.