The design, experimental evaluation and performance of a Traveling-Wave Uni-Traveling Carrier photodiode for Terahertz generation are described and its advantages in terms of frequency response are demonstrated. The device delivered 148 microW at 457 GHz, 24 microW at 914 GHz when integrated with resonant antennas and 105 microW at 255 GHz, 30 microW at 408 GHz, 16 microW at 510 GHz and 10 microW at 612 GHz. Record levels of Terahertz figure of merit (PTHz/Popt2 in W(-1)) were achieved ranging from 1 W(-1) at 110 GHz to 0.0024 W(-1) at 914 GHz.
We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).
Optically pumped mixing in travelling-wave uni-travelling carrier photodiodes is proposed as a novel technique for detecting millimetre-wave signals. An experimental demonstration was performed at a frequency of 100 GHz. From DC measurements, an increase in the responsivity was found at high levels of optical power. The mixing mechanism is attributed to the variation of the responsivity with the applied reverse bias and the optical input power. The maximum intermediate frequency power was found to be -35 dBm for a 4 dBm radio frequency power, while an average conversion loss of 40 dB was achieved. A wide dynamic range of more than 42 dB was measured, limited by the maximum available millimetre-wave power.
We report the generation of a 95 GHz carrier frequency by optical heterodyning of two wavelengths from adjacent channels from an arrayed waveguide grating-based multiwavelength laser. The extended cavity structure of the device provides low phase noise and narrow optical linewidth, further enhanced by the intracavity filter effect of the arrayed waveguide grating. We demonstrate that the generated RF beat note, at 95 GHz, has a -3 dB linewidth of 250 kHz. To the best of our knowledge, this is the narrowest RF linewidth generated from a free-running dual-wavelength semiconductor laser. The device is realized as a photonic integrated circuit using active-passive integration technology, and fabricated on a multiproject wafer run, constituting a novel approach for a compact, low-cost dual-wavelength heterodyne source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.