TransJakarta Bus Lane is a special lane that is only passed by TransJakarta bus and is not allowed for other riders entering and passing the lane. But by reason of avoiding congestion, some riders break through the Transjakarta bus lane. This has distrubed Transjakarta bus travel schedule. Several attempts have been made by the government to prevent riders from entering TransJakarta route by installing 50 cm separator in several corridors, making Moveable concrete barriere and since Monday, 25 Noveber 2013 has been applied a maximum fine of Rp 500,000 for both the two- and four-wheeled vehicles or more, entering into a special line of TransJakarta bus or busway lane refers to article 287, Law No. 22 of 2009. The purpose of this study is to monitor in real time the rider who commits a violation or breaks through TransJakarta bus lane. The monitoring system is built in the form of hardware model consisting of Raspberry Pi 3 Model B, ultrasonic sensor HC-SR04, webcamera, and software in the form of website applications. Data processing vehicle license plate number using tesseract ocr library on raspberry. When the hardware model is turned on the ultrasonic sensor HC-SR04 detects the distance of the vehicle object, at a distance of ≤ 10 cm webcamera shoots the vehicle license plate model. Images taken by webcamera processed by raspberry using tesseract ocr library through threshold process so it can be read. The results is displayed on the website application so that it can known the identity of the violator.
Automatic Meter Reading (AMR) adalah sistem pembacaan atau pengambilan data hasil pengukuran energi listrik pada konsumen, baik secara lokal maupun jarak jauh. Salah satu fungsi sistem ini adalah untuk menghitung kerugian atau penyusutan distribusi. Salah satu masalah yang dihadapi oleh PLN adalah penyusutan non-teknis yang tinggi dari pelanggan AMR potensial karena kesalahan pemasangan dan pemeliharaan serta tindakan tidak jujur yang dilakukan oleh beberapa konsumen, ini memiliki pengaruh besar pada kerugian daya listrik. PT. PLN Disjaya saat ini memiliki 34.000 pelanggan dan menghadapi kesulitan dalam memilih pelanggan mana yang harus diperiksa terlebih dahulu, karena jumlah personel di lapangan sekitar 5 orang, sehingga petugas yang melakukan sweep di lapangan hanya dapat menemukan sedikit kerusakan. Ini memotivasi penulis untuk melakukan pengelompokan yang dapat digunakan untuk memfasilitasi analisis dan evaluasi data. Metode K-Means digunakan dalam penelitian ini untuk mengelompokkan data berdasarkan riwayat penggunaan daya listrik dan untuk menentukan jumlah kelompok yang paling optimal digunakan metode Davies-Bouldin Index (DBI). Berdasarkan hasil pengujian dengan 2-6 set cluster, hasil set cluster yang paling optimal adalah set cluster 4 karena memiliki nilai DBI terkecil, yaitu 0,893, yang berarti set cluster 4 memiliki kepadatan masing-masing objek dengan centroid terbaik dan jarak antar cluster juga dipisahkan dengan baik. Cluster 1 memiliki 12 anggota, klaster 2: 54 anggota, klaster 3: 34 anggota dan klaster 4: 3 anggota. Himpunan 4 cluster memiliki kinerja terbaik dalam pengelompokan data tentang penggunaan daya historis pelanggan AMR (Automatic Meter Reading) di kelas bisnis, setiap titik pusat atau titik pusat dari masing-masing cluster digunakan sebagai atribut dan nilai penggunaan daya pelanggan AMR bagan bisnis di PT. PLN (Persero) Distribusi Jakarta Raya. Tahap pengujian yang diuji adalah data 3 pelanggan yang dikategorikan sebagai pelanggan dengan daya listrik penggunaan tidak normal. Pengujiannya adalah, dengan menentukan jarak dari masing-masing objek pengujian data ke setiap centroid dalam kelompok 4 set. Diharapkan bahwa sistem ini dapat digunakan oleh petugas karyawan di sektor Distribusi, Efisiensi, Pengukuran dan Kualitas Sub Sistem Sistem Distribusi untuk menetapkan target operasi P2TL di kantor distribusi PT. PLN (Pesero) Distribusi Jakarta Rayatau kehilangan listrik adalah salah satu hasil dari penerapan sistem pembacaan daya listrik historis, AMR (Automatic Meter Reading). Salah satu jenis kerugian yang memberi dampak besar terhadap kerugian listrik adalah kerugian Non-Teknis. Saat ini untuk mendeteksi kerugian itu sendiri, petugas masih memeriksa data secara langsung dari setiap pelanggan yang masuk untuk menganalisis dan mengevaluasi data. Terkait hal ini, diperlukan suatu sistem untuk memudahkan analisis dan evaluasi data. Metode K-Means digunakan dalam penelitian ini untuk mengelompokkan data berdasarkan riwayat penggunaan daya listrik dan untuk menentukan jumlah kelompok yang paling optimal digunakan metode Davies-Bouldin Index (DBI). Berdasarkan hasil pengujian aplikasi dengan 2-6 set cluster, hasil set cluster yang paling optimal adalah set cluster 4 karena memiliki nilai DBI terkecil, yaitu 0,893, yang berarti set cluster 4 memiliki kepadatan setiap objek dengan centroid terbaik dan jarak antara cluster juga dipisahkan dengan baik. Cluster 1 memiliki 12 anggota, klaster 2: 54 anggota, klaster 3: 34 anggota dan klaster 4: 3 anggota. Himpunan 4 cluster memiliki kinerja terbaik dalam pengelompokan data tentang penggunaan daya historis pelanggan AMR (Automatic Meter Reading) di kelas bisnis, setiap titik pusat atau titik pusat dari masing-masing cluster digunakan sebagai atribut dan nilai penggunaan daya pelanggan AMR grafik bisnis di PT. PLN (Persero) Distribusi Jakarta Raya. Tahap pengujian yang diuji adalah data 3 pelanggan yang dikategorikan sebagai pelanggan dengan daya listrik penggunaan tidak normal. Pengujiannya adalah, dengan menentukan jarak dari masing-masing objek pengujian data ke setiap centroid dalam kelompok 4 set. Diharapkan aplikasi ini dapat digunakan oleh petugas karyawan di sektor Distribusi, Efisiensi, Pengukuran dan Kualitas Sub Sistem Sistem Distribusi untuk menetapkan target operasi P2TL di kantor distribusi PT. PLN (Pesero) Distribusi Jakarta Raya.
<span>Automatic meter reading (AMR) is a reading system result the measurement of electrical energy consumen, both locally and remotely. The problems faced is the high non-technical shrinkage of AMR customers due to installation, maintenance errors as well as dishonest actions some consumers, this has a major influence on electrical power losses. PT. PLN Disjaya currently faces difficulties having to choose which customers should be checked first, so the field can only find a little damage. The K-means method based on historical electric power usage and determine the most optimal number of groups the davies-bouldin index (DBI) method. Based on the results of testing with 2-6 sets of clusters, the cluster set results are the most optimal is set cluster 4 because it has the smallest DBI value 0.893. The set of 4 clusters has the best performance in data grouping of historical power usage of AMR customers the business class, each centroid of each cluster is used as an attribute and value of the AMR customer power usage business chart. The testing phase is customers who categorized as customers with un-normal usage electricity power. The test is, by determining the distance data testing each centroid in the cluster 4 set.</span>
<span>The purpose of this research is to observe the effectiveness of independent component analysis (ICA) method for denoising raw EEG signals based on word imagination, which will be used for word classification on unspoken speech. The electroencephalogram (EEG) signals are signals that represent the electrical activities of the human brain when someone is doing activities, such as sleeping, thinking or other physical activities. EEG data based on the word imagination used for the research is accompanied by artifacts, that come from muscle movements, heartbeat, eye blink, voltage and so on. In previous studies, the ICA method has been widely used and effective for relieving physiological artifacts. Artifact to signal ratio (ASR) is used to measure the effectiveness of ICA in this study. If the ratio is getting larger, the ICA method is considered effective for clearing noise and artifacts from the EEG data. Based on the experiment, the obtained ASR values from 11 subjects on 14 electrodes amounted are within the range of 0,910 to 1,080. Thus, it can be concluded that ICA is effective for removing artifacts from EEG signals based on word imagination.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.