Changes in vertical total electron content (VTEC) over West Africa which were associated with four geomagnetic storms in 2015 have been studied. The spatial evolution of the quiet time TEC over West Africa for four months (vis; March, June, October and December) which may give rise to unique features of the storm TEC were also evaluated. Quiet-time VTEC (i.e Sq VTEC) was obtained using the hourly means of the international quietest days for each month when a storm of interest occurred. The change in TEC ( ) was obtained after removing the quiet time VTEC from the storm day VTEC. A significant latitudinal variation in VTEC was observed at 22:00LT over West Africa and this was accompanied by the usual broad peak at about 14-17UT. The latitudinal disparity observed in the Sq at 22.00LT was likely driven by the intesification of the fountain effect. The maximum observed during the storms in 2015 were of the other of 16 TECU. These results have important implications for our present understanding of TEC evolution during a geomagnetic and its direct effect on the technologies that depend on it.
Studies have been done on the variability of cosmic rays flux during solar quiet days at mid and high latitudes. By using the 5 quietest days for each month, the monthly mean diurnal variation of cosmic ray anisotropy have been derived for the period 1981 to 2007, which covers part of cycles 21, 22 and 23. These quiet days are days during which the sun is relatively magnetically quiet, leading to less anisotropic behaviour in the diurnal flux of cosmic rays measured on the earth surface. Four stations (Rome, Oulu, Inuvik and Thule) were used in this study to understand the important features of the high latitude and mid-latitude diurnal wave, and how solar and geomagnetic activity may be influencing the wave characteristics. Cosmic ray wave characteristics were obtained by discrete Fourier transform (DFT). The mean, diurnal amplitude, phase and dispersion for each month's diurnal wave were calculated and profiled. There was clear indication that the terrestrial effect on the variability of the monthly mean of Cosmic ray count rates was more associated with geomagnetic activity rather than rigidity of the cosmic rays. Correlation of the time series of these wave characteristics (that is, amplitude and phase) with solar and geomagnetic activity index showed better association with solar activity.
In this work, monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM) were employed and their variability was compared with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four solar cycles. The difference (CRdiff) between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (Hdiff) derived from the nearby geomagnetic stations. Zeroth-and First-correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. The present results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimums. The absence of this feature in the slow-time varying cosmic ray count rates in all stations and in the mid latitude geomagnetic stations suggests that the local geomagnetic disturbance do not play a significant role in modulating the cosmic ray flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.