Residual stress often has a significant impact on part performance and lifetime. Existing measurement techniques using strain gauges or non-destructive methods are often expensive and time-consuming. This paper presents a low-cost, novel measurement device that uses digital image correlation with the hole-drilling method to quantify the magnitude and preferred orientation of these locked-in forces. A two-axis measurement device that rapidly drills and images the surface around the hole was developed to measure residual stresses as a function of depth with sub-millimetre resolution. Validation of the device and DIC methodology was performed using a four-point bending specimen and comparison with conventional strain gauge methods. The results showed strong correlations between the two measurement techniques, as well as the theoretical estimates. The total cost of production was estimated to be approximately £380, which is significantly cheaper than competitors. The device also substantially reduced the cost per measurement point (less than £1 vs. £50+) and shortened the experiment duration from 2 h per point to 45 min per measurement. A functional, rapid, economical device has been designed and produced, which is currently being used for residual stress analysis of industrial samples. The presented design is completely open-source, and the relevant links are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.