Many real-world applications adopt multi-label data streams as the need for algorithms to deal with rapidly changing data increases. Changes in data distribution, also known as concept drift, cause existing classification models to rapidly lose their effectiveness. To assist the classifiers, we propose a novel algorithm called Label Dependency Drift Detector (LD3), an unsupervised concept drift detector using label dependencies within the data for multi-label data streams. Our study exploits the dynamic temporal dependencies between labels using a label influence ranking method, which leverages a data fusion algorithm and uses the produced ranking to detect concept drift. LD3 is the first unsupervised concept drift detection algorithm in the multi-label classification problem area. In this study, we perform an extensive evaluation of LD3 by comparing it with 14 prevalent supervised concept drift detection algorithms that we adapt to the problem area using 15 datasets and a baseline classifier. The results show that LD3 provides between 16.9 and 56% better predictive performance than comparable detectors on both real-world and synthetic data streams.
Many real-world applications adopt multi-label data streams as the need for algorithms to deal with rapidly changing data increases. Changes in data distribution, also known as concept drift, cause the existing classification models to rapidly lose their effectiveness. To assist the classifiers, we propose a novel algorithm called Label Dependency Drift Detector (LD3), an implicit (unsupervised) concept drift detector using label dependencies within the data for multi-label data streams. Our study exploits the dynamic temporal dependencies between labels using a label influence ranking method, which leverages a data fusion algorithm and uses the produced ranking to detect concept drift. LD3 is the first unsupervised concept drift detection algorithm in the multi-label classification problem area. In this study, we perform an extensive evaluation of LD3 by comparing it with 14 prevalent supervised concept drift detection algorithms that we adapt to the problem area using 12 datasets and a baseline classifier. The results show that LD3 provides between 19.8% and 68.6% better predictive performance than comparable detectors on both real-world and synthetic data streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.