Protein sub-similarity matching remains largely unknown even though it is becoming one of the most important open problems in bioinformatics for drug and vaccine design. Variations in human immune responses to vaccines are, and thus responses, fail. We propose a new matching and protein alignment method based on clustering and Longest Common Subsequence (LCS) techniques. After clustering, we found LCS between a candidate protein and meningitis outer membrane antigen for each candidate. Each similarity was scored, and closest similarities were determined with statistical methods. We located three closely matching proteins among a total of 50 human immune system proteins. Moreover, we selected a HIV-1 related protein from one of scenarios, because it revealed a relationship between HIV and meningitis patients. We also found that Ω main chain torsion angle for atoms CA, C and N is the best angle for determining sub-similarities between meningitis antigen and immune proteins.
The future of aircrafts is in unmanned aerial vehicles (UAVs), and any improvement in UAVs will play an important role, especially when it comes to intelligence and capabilities for air combat manoeuvring. The ultimate goal in such work is to bring computers to the level of a pilot’s intelligence capability in air combat. In order to achieve this goal, operations research is required. The present study is based on the fight or flight situation in air combat manoeuvring and aims to improve unmanned aircrafts and better understand the difficulties of modelling intelligence. Since the project’s focus is on the problem of path planning for moving targets and enemy situations, particle swarm optimization and genetic algorithms are modelled and tested against each other in a dog fight scenario. Also, multiple targets and enemies’ scenarios are developed to compare them against each other. Moreover, imperfect information affect and dynamic environment are evaluated in this research and required actions and options are analysed. Overall, this research aims to show the importance of artificial intelligence, articulate the role of the operations research and assess the implementation of intelligence through certain heuristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.