Viscose fabric-reinforced unsaturated polyester composites were successfully prepared through vacuum infusion process. Unidirectional viscose fabric was modified by two different organosilane coupling agents and by acetylation treatment. The main objective was to study the influence of fabric treatment on the mechanical and water absorption properties of the composites. Flexural, tensile and impact properties of composites were studied. The results from mechanical testing of composites pointed out that 3-aminopropyltriethoxy silane treatment increased the flexural and impact strengths of the composites with respect to untreated fabric composite. The impact strength of 3-aminopropyltriethoxy silane-treated fabric composites almost doubled compared to the value of untreated fabric composite. Among all the composites under study, those with fabrics treated by 2 vol% 3-aminopropyltriethoxy silane in ethanol/water (95:5) solution exhibited significant improvement in water uptake resistance. An unsaturated polyester gelcoat and topcoat were applied as the outer surface on the composites with untreated fabric. This was done in order to investigate the visual surface appearance and evaluate the gelcoat and topcoat effect on water absorption after accelerated water immersion test. The regenerated cellulose fibre as reinforcement shows high potential to be used as an alternative for natural bast fibres, especially, when toughness of material matters. Chemical treatment of regenerated cellulose fibres could result in improvement in properties of polymer composites, considering that the appropriate treatment method is selected for the corresponding fibre-matrix system.
Purpose
The purpose of this paper is the design and investigation of novel acrylated epoxidized soybean oil-based photocurable systems as candidate materials for optical 3D printing.
Design/methodology/approach
Aromatic dithiols, benzene-1,3-dithiol or benzene-1,4-dithiol, were used as cross-linking agents of acrylated epoxidized soybean oil in these systems. Kinetics of photocross-linking was investigated by real-time photorheometry using two different photoinitiators, 2, 2-dimethoxy-2-phenylacetophenone or 2-hydroxy-2-methylpropiophenone, in different quantities. The effect of the initial composition on the rate of photocross-linking, mechanical, thermal properties and swelling of obtained polymers was investigated.
Findings
The rate of photocross-linking was higher, more cross-links and shorter polymer chains between cross-linking points of the network were formed when benzene-1,4-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions. The higher yield of insoluble fraction, glass transition temperatures and values of compressive modulus were obtained when benzene-1,3-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions.
Originality/value
This is the first study of acrylated epoxidized soybean oil-based thiol-ene system by real-time photorheometry. The designed novel photocurable systems based on acrylated epoxidized soybean oil and benzenedithiols are promising renewable photoresins for rapid optical 3D printing on demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.