Biomass is considered as one of the most promising fuels worldwide, mostly because of its renewability and almost-neutral carbon balance. At the same time, numerous studies have shown that the combustion of biomass fuels results in emissions of multiple gaseous and particle phase pollutants. The aim of this study was to fill the gap in the data of emissions from the combustion of agricultural biomass fuels. Five agricultural residue-derived fuels were tested: sunflower stalk pellets, straw pellets, buckwheat shells, corn stalk pellets, and wheat grain screenings. In addition, wood and sewage sludge pellets were investigated as reference fuels. Experiments were performed in a commercially available domestic 13 kW pellet burner during optimal and stable combustion conditions. The characterization of the emissions of gaseous basic pollutants (CO, CO 2 , SO 2 , NO x ), as well as combustion specific pollutants (size-segregated particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), as well as BTEX (benzene, toluene, ethylbenzene, xylenes) was conducted. The emissions of PM were mostly represented by PM 1 fraction (PM 1 /TSP > 0.8) in the case of all fuels. Total PM emissions ranged from 0.28 g/kg to 5.23 g/kg. Total emissions of PAHs ranged from 469.4 μg/kg to 7212.2 μg/kg. Size-segregated PAH analysis revealed that the most of PAHs were detected in fine aerosol fraction (0.056−0.18 μm). Sewage sludge pellets were determined as the most polluting fuel, including PAH emissions. Several fuels, including sunflower stalk pellets, buckwheat shells, and sewage sludge pellets, were found to be the least favorable fuels for combustion in a small-scale pellet-type burner, because of increased emissions of CO and PAHs.
The droplet heat and mass transfer processes are important for liquid spraying technologies, which were investigated when applying the theoretical and numerical modelling and experimental methods. In this work, results of experimental research on the heating of water droplets in purified biofuel flue gas were presented and analyzed. In experimental investigation, the purified biofuel flue gas is replaced by additionally humidified airflow. The experiment methods and results processing are discussed and provided. Impact of air heating and additional humidification was estimated. While heating and additionally humidifying the air flow was focused on boundary conditions in condense economizers, when the flue gas temperature is 20-100°C and water vapor volume fraction is 0-0.2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.