The availability of freshwater is becoming a global concern. Because agricultural consumption has been increasing steadily, the mapping of irrigated areas is key for supporting the monitoring of land use and better management of available water resources. In this paper, we propose a method to automatically detect and map center pivot irrigation systems using U-Net, an image segmentation convolutional neural network architecture, applied to a constellation of PlanetScope images from the Cerrado biome of Brazil. Our objective is to provide a fast and accurate alternative to map center pivot irrigation systems with very high spatial and temporal resolution imagery. We implemented a modified U-Net architecture using the TensorFlow library and trained it on the Google cloud platform with a dataset built from more than 42,000 very high spatial resolution PlanetScope images acquired between August 2017 and November 2018. The U-Net implementation achieved a precision of 99% and a recall of 88% to detect and map center pivot irrigation systems in our study area. This method, proposed to detect and map center pivot irrigation systems, has the potential to be scaled to larger areas and improve the monitoring of freshwater use by agricultural activities.
Image segmentation is an important step in many computer vision and image processing algorithms. It is often adopted in tasks such as object detection, classification, and tracking. The segmentation of underwater images is a challenging problem as the water and particles present in the water scatter and absorb the light rays. These effects make the application of traditional segmentation methods cumbersome. Besides that, to use the state-of-the-art segmentation methods to face this problem, which are based on deep learning, an underwater image segmentation dataset must be proposed. So, in this paper, we develop a dataset of real underwater images, and some other combinations using simulated data, to allow the training of two of the best deep learning segmentation architectures, aiming to deal with segmentation of underwater images in the wild. In addition to models trained in these datasets, fine-tuning and image restoration strategies are explored too. To do a more meaningful evaluation, all the models are compared in the testing set of real underwater images. We show that methods obtain impressive results, mainly when trained with our real dataset, comparing with manually segmented ground truth, even using a relatively small number of labeled underwater training images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.