Image-based models for computer graphics lack resolution independence: they cannot be zoomed much beyond the pixel resolution they were sampled at without a degradation of quality. Interpolating images usually results in a blurring of edges and image details. We describe image interpolation algorithms which use a database of training images to create plausible high-frequency details in zoomed images. Image pre-processing steps allow the use of image detail from regions of the training images which may look quite different from the image to be processed. These methods preserve fine details, such as edges, generate believable textures, and can give good results even after zooming multiple octaves.
Abstract. We describe a learning-based method for low-level vision problems-estimating scenes from images. We generate a synthetic world of scenes and their corresponding rendered images, modeling their relationships with a Markov network. Bayesian belief propagation allows us to efficiently find a local maximum of the posterior probability for the scene, given an image. We call this approach VISTA-Vision by Image/Scene TrAining.We apply VISTA to the "super-resolution" problem (estimating high frequency details from a low-resolution image), showing good results. To illustrate the potential breadth of the technique, we also apply it in two other problem domains, both simplified. We learn to distinguish shading from reflectance variations in a single image under particular lighting conditions. For the motion estimation problem in a "blobs world", we show figure/ground discrimination, solution of the aperture problem, and filling-in arising from application of the same probabilistic machinery.
We present an example-based method for translating line drawings into different styles. We fit each line as a linear combination of similar lines in a training set, and interpolate between the corresponding training examples in the output style. The synthesized lines preserve the desired stylistic features of the output style.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.