The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern
1
. For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings
2
. Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the
nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance.
Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically-relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058 located in the drug binding site, a reaction catalyzed by the Erm-type rRNA-methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4Å resolution together with the structures of unmethylated 70S ribosome functional complexes alone and in combination with macrolides. Altogether, our structural data do not support the previous models and, instead, suggest a principally new explanation of how A2058-dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome revealed a previously unknown role of desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance.
Ribosome-targeting antibiotics serve both as powerful antimicrobials and as tools for studying the ribosome. The ribosomal catalytic site, the peptidyl transferase center (PTC), is targeted by a large number of various drugs. The classical and best-studied PTC-acting antibiotic chloramphenicol, as well as the newest clinically significant linezolid, were considered indiscriminate inhibitors of every round of peptide bond formation, presumably inhibiting protein synthesis by stalling ribosomes at every codon of every gene being translated. However, it was recently discovered that chloramphenicol or linezolid, and many other PTC-targeting drugs, preferentially arrest translation when the ribosome needs to polymerize particular amino acid sequences. The molecular mechanisms and structural bases that underlie this phenomenon of context-specific action of even the most basic ribosomal antibiotics, such as chloramphenicol, are unknown. Here we present high-resolution structures of ribosomal complexes, with or without chloramphenicol, carrying specific nascent peptides that support or negate the drug action. Our data suggest that specific amino acids in the nascent chains directly modulate the antibiotic affinity to the ribosome by either establishing specific interactions with the drug molecule or obstructing its placement in the binding site. The model that emerged from our studies rationalizes the critical importance of the penultimate residue of a growing peptide for the ability of the drug to stall translation and provides the first atomic-level understanding of context specificity of antibiotics that inhibit protein synthesis by acting upon the PTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.