Artificial intelligence and machine learning have demonstrated remarkable results in science and applied work. However, present AI models, developed to be run on computers but used in human-driven applications, create a visible disconnect between AI forms of processing and human ways of discovering and using knowledge. In this work, we introduce a new concept of “Human Knowledge Models” (HKMs), designed to reproduce human computational abilities. Departing from a vast body of cognitive research, we formalized the definition of HKMs into a new form of machine learning. Then, by training the models with human processing capabilities, we learned human-like knowledge, that humans can not only understand, but also compute, modify, and apply. We used several datasets from different applied fields to demonstrate the advantages of HKMs, including their high predictive power and resistance to noise and overfitting. Our results proved that HKMs can efficiently mine knowledge directly from the data and can compete with complex AI models in explaining the main data patterns. As a result, our study reveals the great potential of HKMs, particularly in the decision-making applications where “black box” models cannot be accepted. Moreover, this improves our understanding of how well human decision-making, modeled by HKMs, can approach the ideal solutions in real-life problems.
In this paper we are interested in studying concise representations of concepts and dependencies, i.e., implications and association rules. Such representations are based on equivalence classes and their elements, i.e., minimal generators, minimum generators including keys and passkeys, proper premises, and pseudo-intents. All these sets of attributes are significant and well studied from the computational point of view, while their statistical properties remain to be studied. This is the purpose of this paper to study these singular attribute sets and in parallel to study how to evaluate the complexity of a dataset from an FCA point of view. In the paper we analyze the empirical distributions and the sizes of these particular attribute sets. In addition we propose several measures of data complexity relying on these attribute sets in considering real-world and related randomized datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.