Together with plague, smallpox and typhus, epidemics of dysentery have been a major scourge of human populations for centuries(1). A previous genomic study concluded that Shigella dysenteriae type 1 (Sd1), the epidemic dysentery bacillus, emerged and spread worldwide after the First World War, with no clear pattern of transmission(2). This is not consistent with the massive cyclic dysentery epidemics reported in Europe during the eighteenth and nineteenth centuries(1,3,4) and the first isolation of Sd1 in Japan in 1897(5). Here, we report a whole-genome analysis of 331 Sd1 isolates from around the world, collected between 1915 and 2011, providing us with unprecedented insight into the historical spread of this pathogen. We show here that Sd1 has existed since at least the eighteenth century and that it swept the globe at the end of the nineteenth century, diversifying into distinct lineages associated with the First World War, Second World War and various conflicts or natural disasters across Africa, Asia and Central America. We also provide a unique historical perspective on the evolution of antibiotic resistance over a 100-year period, beginning decades before the antibiotic era, and identify a prevalent multiple antibiotic-resistant lineage in South Asia that was transmitted in several waves to Africa, where it caused severe outbreaks of disease.
The multidrug-resistant (MDR) Salmonella enterica serotype Newport strain that produces CMY-2 β-lactamase (Newport MDR-AmpC) was the source of sporadic cases and outbreaks in humans in France during 2000–2005. Because this strain was not detected in food animals, it was most likely introduced into France through imported food products.
We studied the prevalence of resistance to extended-spectrum cephalosporins (ESC) among 1,078 Salmonella enterica isolates collected from adults admitted to Botkin Hospital, St. Petersburg, Russia, for gastroenteritis between 2002 and 2005. Only two ESC-resistant isolates were detected, giving a low percentage of strains resistant to ESC (0.2%). One multidrug-resistant (MDR) isolate of the Virchow serotype produced a CTXM-3 extended-spectrum beta-lactamase (ESBL). The bla(CTX-M-3) gene was located downstream from an ISEcp1 element, on an 80-kb conjugative plasmid. The Virchow isolate possessed a class 1 integron with a 2.2-kb gene cassette (dhfrXII-orfF-aadA2). The second ESC-resistant isolate belonged to serotype Newport, was also MDR and produced a CMY-2 cephamycinase. This CMY-2-producing isolate (also called Newport MDR-AmpC) possessed a class 1 integron with a 1-kb gene cassette including a new variant of the aadA gene, aadA24. A large plasmid (>125 kb) was involved in transfer of the bla(CMY-2) gene. The ESC-resistant S. enterica isolates detected in this study were different from those (S. enterica serotype Typhimurium DT193 producing CTXM-4 or CTX-M-5 ESBLs) involved in several nosocomial outbreaks between 1994 and 2003 in Russia. This is the first description of both CTX-M-3 ESBL-producing S. enterica and Newport MDR-AmpC in Russia.
Objective was to investigate the SARS-CoV-2 collective immunity status of the population of Belarus within the context of the COVID-19 pandemic. Materials and methods. The work was carried out according to the methodology for assessing SARS-CoV-2 population immunity, developed by Rospotrebnadzor Russia and the Ministry of Health of Belarus with the participation of the St. Petersburg Pasteur Institute, taking into account WHO recommendations. The Bioethics Committee of Belarus and the local ethics committee of the St. Petersburg Pasteur Institute approved the study. Selection of participants was carried out using a questionnaire method and online technology (internet, cloud server). Volunteers were randomized into seven age groups (years of age): 1–17; 18–29; 30–39; 40–49; 50–59; 60–69; and 70+. Regional randomization ensured proportional representation of volunteers from each region, and no more than 30 people were included from one enterprise. In accordance with manufacturer instructions, blood plasma samples were analyzed for: IgG antibodies (Abs) to the SARS-CoV-2 nucleocapsid (Nc) using a quantitative ELISA test system; and IgG Abs to the receptor binding domain (RBD) of the SARS-CoV-2 S (spike) surface glycoprotein using a qualitative ELISA test system. Statistical processing was carried out using Excel 2010 and other software. Statistical differences were designated as significant when p < 0.05, unless otherwise indicated. Results. The level of seroprevalence, in terms of Abs to Nc among the Belarusian population, was 38.4% (95% CI 37.6–45.4). The highest Ab levels were found among individuals in older age groups (50-70+ years old). The lowest were found in children 1–17 years old and in young people 18–39 years old The distribution of seroprevalence across Belarusian regions was relatively homogeneous, with the exception of the Minsk Region, where a statistically significant decrease in the indicator was noted. In terms of profession, the largest share of seropositive individuals was found among transportation workers; the smallest was found in business. The moderate COVID-19 incidence has not led to a dramatic increase in the number of contacts. The base reproduction number (R0) was 1.3. In the Republic of Belarus, there was a moderate level of asymptomatic COVID-19 among seropositive individuals (45.3% [95% CI 44.0–46.7]). This form of infection was observed most often among children aged 1–17 years old (65.0% [95% CI 61.3–68.6]). In parallel with seroprevalence assessment, SARS-CoV-2 vaccination was carried out. We used two vaccines: Gam-COVID-Vac (also known as Sputnik V, developed by Gamaleya National Center for Epidemiology and Microbiology, Russia); and BBIBP-CorV (Sinopharm, PRC). Vaccination against SARS-CoV-2 was accompanied by an increase in the level of anti-RBD Abs (95% [95% CI 94.7–96.7]). Taking into account the vaccination of a subset of the population with BBIBP-CorV, the overall herd immunity, inferred from the analyzed indicators (presence of anti-Nc or anti-RBD Abs), was 47.1% (95% CI 46.3–48.0). Conclusion. COVID-19 in Belarus was characterized by a moderately pronounced course of the epidemic process. The threshold level of herd immunity to SARS-CoV-2 has not yet been reached, as a result of which the conditions for progression of the epidemic remain.
Extended-spectrum beta-lactamases (ESBL) and AmpC producing-Escherichia coli have spread worldwide, but data about ESBL-producing-E. coli in the Northern and Eastern regions of Europe is scant. The aim of this study has been to describe the phenotypical and molecular epidemiology of different ESBL/AmpC/Carbapenemases genes in E. coli strains isolated from the Baltic States (Estonia, Latvia, and Lithuania), Norway and St. Petersburg (Russia), and to determine the predominant multilocus sequence type and single nucleotide polymorphisms diversity of E. coli isolates deduced by whole genome sequencing (WGS). A total of 10,780 clinical E. coli strains were screened for reduced sensitivity to third-generation cephalosporins. They were collected from 21 hospitals located in Estonia, Latvia, Lithuania, Norway and St. Petersburg during a 5 month period in 2012. The overall prevalence of ESBL/AmpC strains was 4.7% by phenotypical test and 3.9% by sequencing. We found more strains with the ESBL/AmpC phenotype and genotype in St. Petersburg and Latvia than other countries. Of phenotypic E. coli strains, 85% contained confirmed ESBL genes (including blaCTX–M, blaTEM–29, blaTEM–71), AmpC genes (blaCMY–59, blaACT–12/–15/–20, blaESC–6, blaFEC–1, blaDHA–1), or carbapenemase genes (blaNDM–1). blaCTX–M–1, blaCTX–M–14 and blaCTX–M–15 were found in all countries, but blaCTX–M–15 prevalence was higher in Latvia than in St. Petersburg (Russia), Estonia, Norway and Lithuania. The dominating AmpC genes were blaCMY–59 in the Baltic States and Norway, and blaDHA–1 in St. Petersburg. E. coli strains belonged to 83 different sequence types, of which the most prevalent was ST131 (40%). In conclusion, we generally found low ESBL/AmpC/Carbapenemase prevalence in E. coli strains isolated in Northern/Eastern Europe. However, several inter-country differences in distribution of particular genes and multilocus sequence types were found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.